

ΕN

DECLARATION OF PERFORMANCE

DoP W0009

for fischer PowerFast II screws

IOI IISCHELFOWEIFASLII SCIEWS		
1. Unique identification code of the product-type:	DoP W0009	
2. Intended use/es:	Self-drilling screws for use in timber cons	tructions, see appendix, especially annexes 1, 2.
3. Manufacturer:	fischerwerke GmbH & Co. KG, Klaus-Fiscl	her-Str. 1, 72178 Waldachtal, Germany
4. Authorised representative:	-	
5. System/s of AVCP:	3	
6. European Assessment Document:	EAD 130118-01-0603	
European Technical Assessment:	ETA-19/0175; 2021-08-09	
Technical Assessment Body:	ETA-Danmark A/S 2699 Universität Innsbruck	
Notified body/ies:	2699 Universität Innsbruck	
7. Declared performance/s:		
Mechanical resistance and stability (BWR 1), Safe	ty and accessibility in use (BWR A)	
Dimensions:	ty and accessionity in use (DWI(4)	Annexes 17-24
Characteristic yield moment:		Annex 6
Bending angle:		Annex 3
Characteristic withdrawal parameter:		Annexes 6-8
Characteristic head pull-through parameter:		Annex 9
Characteristic tensile strength:		Annexes 3, 9
Characteristic yield strength:		Annex 6
Characteristic torsional strength:		Annex 3
Insertion Moment:		Annex 3
Spacing, end and edge distances of the screws an material:	nd minimum thickness of the wood based	Annexes 11-14
Slip modulus for mainly axially loaded screws:		Annex 11
Durability against corrosion:		Annex 15
Safety in case of fire (BWR 2)		
Reaction to fire:		Class (A1)
8. Appropriate Technical Documentation and/or	-	

8. <u>Appropriate Technical Documentation and/or</u> <u>Specific Technical Documentation:</u>

The performance of the product identified above is in conformity with the set of declared performance/s. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Signed for and on behalf of the manufacturer by:

U.f.

Dr.-Ing. Oliver Geibig, Managing Director Business Units & Engineering Tumlingen, 2021-08-16

Jürgen Grün, Managing Director Chemistry & Quality

This DoP has been prepared in different languages. In case there is a dispute on the interpretation the English version shall always prevail.

The Appendix includes voluntary and complementary information in English language exceeding the (language-neutrally specified) legal requirements.

II SPECIFIC PART

1 Technical description of product

»fischer PowerFast II« screws are self-tapping screws to be used in timber structures. They shall be threaded over a part of the length or over the whole length. The screws shall be produced from carbon steel wire for nominal diameters between 3,0 mm and 6,0 mm. Where corrosion protection is required, the material or coating shall be declared in accordance with the relevant specification given in Annex A of EN 14592.

The FAFS-Clip are made of zinc die cast for »fischer PowerFast II« screws with countersunk head and a diameter of 5,0 mm.

Geometry and Material

The nominal diameter d (outer thread diameter) of the screws shall not be less than 3,0 mm and not greater than 6,0 mm.

The overall length l_s of the screws, shall not be less than 20 mm and shall not be greater than 300 mm. Dimensions see Annex A.

The ratio of inner thread diameter to outer thread diameter d_1/d ranges from 0,50 to 0,80.

The screws are threaded over a minimum length l_g of 4,0 \cdot d (i.e. $l_g \ge 4,0 \cdot$ d).

The thread pitch p (distance between two adjacent thread flanks) ranges from $0,50 \cdot d \text{ to } 0,85 \cdot d$.

No breaking shall be observed at a bending angle of $\alpha \le (45/d^{0.7} + 20)^\circ$.

2 Specification of the intended use in accordance with the applicable EAD

The screws are used for connections in load bearing timber structures between members, softwood and hardwood of: Solid Timber (C), Glued-Laminated Timber (GL), Cross-Laminated Timber (CLT) and Laminated Veneer Lumber (LVL), similar glued members, Wood-Based Panels or steel. »fischer PowerFast II« screws with a thread over the full length can also be used as tensile or compressive reinforcement perpendicular to the grain or as shear reinforcement. Furthermore »fischer PowerFast II«

screws with diameter of 6 mm may also be used for fixing of thermal insulation on rafters and on vertical

facades and 5 mm screws can be combined with the FAFS-Clip.

Steel plates, wood-based panels and plasterboards shall only be fixed on the side of the screw head. The minimum thickness of wood-based panels should be $1,2 \cdot d$.

The following wood-based panels can be used:

- Plywood according to EN 636 or European Technical Assessment or national provisions that apply at the installation site
- Particleboard according to EN 312 or European Technical Assessment or national provisions that apply at the installation site
- Oriented Strand Board (OSB) according to EN 300 or European Technical Assessment or national provisions that apply at the installation site
- Fibreboard according to EN 622-2, EN 622-3 and EN 622-5 or European Technical Assessment (minimum density 650 kg/m³) or national provisions that apply at the installation site
- Cement-bonded particleboard according to EN 634, European Technical Assessment or national provisions at the installation site
- Solid wood panels according to EN 13353 or European Technical Assessment or national provisions that apply at the installation site
- Wood-based panels for use in constructions according to EN 13986
- Cross-Laminated Timber (CLT) according to European Technical Assessment
- Laminated Veneer Lumber (LVL) according to EN 14374 or European Technical Assessment
- Engineered wood products according to European Technical Assessments, provided that the ETA for the product provides provisions for the use of selftapping screws and these provisions are applied

The screws shall be driven into softwood and hardwood with a maximum characteristic density of 730 kg/m³ without pre-drilling or after pre-drilling (see Table 1 and Table 2) with a diameter not larger than the inner thread diameter for the length of the threaded part and with a maximum of the smooth shank diameter for the length of the smooth shank.

Table 1: Recommended pre-drilling diameters			
Nominal diameter	Bore-hole diameter [mm]		
<i>d</i> [mm]	Softwood	Hardwood	
3,0	2,0	2,5	
3,5	2,0	2,5	
4,0	2,5	3,0	
4,5	2,5	3,0	
5,0	3,0	3,0	
6,0	4,0	4,0	

Recommended values without pre-drilling for the maximum penetration length of the threaded part of »fischer PowerFast II« made of carbon steel in wood-based members like ash, beech and oak or LVL according to ETA-14/0354 (e.g. Baubuche) are shown in Table 2. The FAFS-Clip can be installed with or without pre-drilling (see chapter 3.7.11), recommended borehole diameter 5 mm.

without pre-drilling in hardwood			
Nominal diameter	Maximum penetration		
<i>d</i> [mm]	length [mm]		
3,0	40		
3,5	45		
4,0	50		
4,5	60		
5,0	70		
6,0	70		

Table 2: Recommended penetration length without pre-drilling in hardwood

To fix steel parts with the head side of the screw, the boreholes must be pre-drilled with a suitable diameter.

When using screws with a countersunk, step countersunk and raised countersunk head, the upper surface of the screw head must be flush with the surface of the timber part. Countersinking deeper is not permitted and should be avoided, because of damaging the surface and reduce the durability of the construction. Countersunk head screws made of carbon steel according to Annex A1 and A2 can be used together with washers according to Annex A8. Washers according to EN ISO 7094 can be used together with washers according to Annex A8.

For the use of screws in the edge side of wood-based panels one have to pre-drill with a diameter not larger than the inner thread diameter for the length of the threaded part and with a maximum of the smooth shank diameter for the length of the smooth shank.

Pan head, step countersunk and washer head screws according to Annex A3, A4 and A5, may be used together with washers according to EN ISO 7094.

»fischer PowerFast II« screws can be driven in with standard screw drillers and with torque impact screw drivers too (e.g. fischer FSS 18V 400 BL or fischer FSS 18V 600). In combination with steel plates, torque controlled tools e.g. torque wrenches have to be used. For the use of screws in wood-based panels, like particle- and fibreboards, the screws have to be tightened carefully to ensure the characteristic load bearing capacity.

The design of the connections shall be based on the characteristic load-carrying capacities of the screws. The design capacities shall be derived from the characteristic capacities in accordance with Eurocode 5 or an appropriate national code. The screws are intended for the use of connections subjected to static or quasi-static loadings.

The zinc-coated screws are for the use in timber structures subjected to the moisture defined by the service classes 1 and 2 according to EN 1995-1-1.

The intended use of the screws is in timber connections for which all requirements of mechanical resistance, stability and safety in use in the sense of the Basic Works Requirements 1 and 4 of Regulation 305/2011 (EU) shall be fulfilled.

The provisions made in this European Technical Assessment are based on an assumed intended working life of the screws of 50 years.

The indications given on the working life cannot be interpreted as a guarantee given by the producer or Assessment Body, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the products.

Appendix 3 Performance of the product and references to the methods used for its assessment 3 Assessment of characteristic Characteristic 3.1 Mechanical resistance and stability (BWR1) **Characteristic yield moment** Characteristic withdrawal parameter Characteristic head pull-trough parameter of screws See section 3.7 to 3.9 Characteristic yield strength **Insertion moment** Spacing, end and edge distances **Slip modulus Bending angle** No breaking has been observed at a bending angle of $\alpha \leq 45^{\circ}/d^{0.7}+20^{\circ}$ Characteristic value *f*_{tens,k}: **Tensile strength** PowerFast II d= 3.0 mm3,2 kN d= 3,5 mm 4.1 kN d= 4,0 mm 5,2 kN d= 4,5 mm 6.3 kN d = 5,0 mm8,9 kN d= 6,0 mm 13,1 kN **Torsional strength** Characteristic value *f*_{tor,k}: PowerFast II d= 3,0 mm1,5 Nm d= 3,5 mm 2,0 Nm d = 4.0 mm3.0 Nm d = 4.5 mm4,2 Nm d= 5,0 mm 6,0 Nm d = 6.0 mm10,0 Nm Note: Ratio of the characteristic torsional strength to the mean insertion moment: $f_{tor,k} / R_{tor,mean} \ge 1.5$ 3.2 Safety in case of fire (BWR2) **Reaction to fire** The screws are made from steel classified as Performance Class A1 of the characteristic reaction to fire, in accordance with the provisions of Commission Delegated Regulation 2016/364 and EC decision 96/603/EC, amended by EC Decision 2000/605/EC. 3.3 Safety in use (BWR4) See aspects covered by BWR1

3.4 Durability against corrosion

3.5 Identification See Annex A 3.6 Typical and special application area See Annex B

The screws have been assessed as having

satisfactory durability and serviceability when used in timber structures using the timber species described in EN 1995-1-1 and subjected to the conditions defined by service classes 1 and 2

3.7 Mechanical Resistance and Stability

The load-carrying capacities for the »fischer PowerFast II« screws are applicable to the woodbased materials mentioned in paragraph 1 even though the term "timber" has been used in the following. European Technical Assessments for structural members or wood-based panels must be considered if applicable.

The characteristic lateral load-carrying capacities and the characteristic axial withdrawal capacities of »fischer PowerFast II« screws should be used for designs in accordance with Eurocode 5 (EN 1995-1-1) or an appropriate valid national code.

Reductions in the cross-sectional area caused by »fischer PowerFast II« screws shall be taken into account in accordance to the Eurocode 5.

3.7.1 Lateral load-carrying capacity $f_{h,k}$

The characteristic lateral load-carrying capacity of »fischer PowerFast II« screws shall be calculated according to EN 1995-1-1. The contribution of the rope effect may be considered. For the calculation of the load-carrying capacity, the following parameters should be taken into account.

3.7.1.1 Embedment strength $f_{h,\alpha,k}$ for use in Solid Timber (EN 338, EN 15497) and Glued-Laminated Timber (EN 14080)

The embedment strength for »fischer PowerFast II« screws in non-pre-drilled holes arranged at an angle between load and grain direction, $0^{\circ} \le \alpha \le 90^{\circ}$ can be calculated with the help of equation (1).

$$f_{h,k} = 0,082 \cdot \rho_k \cdot d^{-0,3} \tag{1}$$

The embedment strength for »fischer PowerFast II« screws in pre-drilled holes arranged at an angle between load and grain direction, $0^{\circ} \le \alpha \le 90^{\circ}$ can be calculated with the help of equation (2).

$$f_{h,\alpha,k} = 0,082 \cdot \rho_k \cdot (1 - 0,01 \cdot d)$$
 (2)

Note: For the calculation according to the EN 1995-1-1 for the calculation of the effective diameter the nominal diameter d should be used.

Screws parallel to the end-grain direction are only allowed for short-time loads and can be calculated with the help of equation (3).

$$f_{h,k} = 0,0076 \cdot \rho_k^{1,24} \cdot d^{-0,3}$$
(3)

Where

- α Angle between load and the grain direction [°]
- $f_{h,k}$ Characteristic embedment strength [N/mm²]
- ρ_k Characteristic timber gross density [kg/m³]
- *d* Nominal diameter of the screw [mm]

3.7.1.2 Embedment strength $f_{h,\alpha,k}$ for use in Cross-Laminated Timber

If there are no other technical specification (ETA or hEN) for Cross-Laminated Timber (CLT), the embedment strength for screws can be calculated as following. The following specifications are only for screws with a diameter of at least 5 mm, otherwise possible influences of gaps between the single lamellas have to be considered.

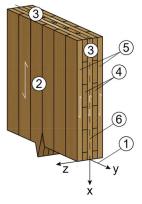


Figure 1: Notations CLT-elements

- (1) Element plane
- (2) Plane surface
- (3) Edge surface (Narrow side)
- (4) Inner layer (Inner lamellas)
- (5) Outer layer (Outer lamellas)
- (6) Middle layer (Middle lamella)

Screws in the plane surface

The embedment strength for screws in the plane surface of CLT-elements should be assumed as for solid timber according to equation (1) or (2), based on the characteristic density of the outer layer. If relevant, the angle between force and grain direction of the outer layer should be considered.

Screws in the narrow (edge) side

The embedment strength for screws in the narrow side of CLT-elements should be assumed according to equation (4).

$$f_{h,k} = 20 \cdot d^{-0.5} \tag{4}$$

3.7.1.3 Embedment strength $f_{h,\alpha,k}$ for use in Laminated Veneer Lumber according to (ETA-14/0354)

The embedment strength for »fischer PowerFast II« screws with $d \ge 5$ mm arranged at an angle between load and grain direction, $0^{\circ} \le \alpha \le 90^{\circ}$ can be calculated with the help of equation (5) in direction 90|90 (see figure 2).

$$f_{h,\alpha,k} = \frac{f_{h,0,k}}{(0,9+0,037\cdot d)\cdot \sin^2 \alpha + \cos^2 \alpha}$$
(5)

With

 $d = 5,0 \text{ mm:} \qquad f_{h,0,k} = 50,0 \text{ N/mm}^2 \\ d = 6,0 \text{ mm:} \qquad f_{h,0,k} = 46,0 \text{ N/mm}^2$

3.7.1.4 Embedment strength $f_{h,\alpha,k}$ for the use in Wood-Based Panels and Plasterboards

The embedment strength for »fischer PowerFast II« screws in non-pre-drilled holes, if no other descriptions are given in Table 3, arranged at an angle α =90° to the plane surface can be calculated with equation (6).

$$f_{h,k} = f_{h,90|90,k} \tag{6}$$

Where

- dNominal diameter of the screw [mm]tMinimum value of the thickness of the
wood-based panels/plasterboards or
effective penetration depth of the screw
[mm]With
- $f_{h,90|90,k}$ Characteristic value of the embedment strength according to Table 3 and Figure 3; the influence of load-grain direction is negligible N/mm²]

<i>Table 3: Characteristic values of the embedment strength</i>	
of »fischer PowerFast II« screws in the plane surface	

	[N/mm ²]
$f_{h,90/90,k} =$	$48 \cdot d^{-0,7} \cdot t^{-0,1}$
0	= 0 + 0 6 0 2
$f_{h, 90/90, k} =$	$50 \cdot d^{-0,6} \cdot t^{0,2}$
	0.7 0.1
$f_{h, 90/90, k} =$	$65 \cdot d^{-0,7} \cdot t^{0,1}$
f _	$65 \cdot d^{-0,7} \cdot t^{0,1}$
] h, 90/90,k —	05 4 4
$f_{h 0 0 0 k} =$	$30 \cdot d^{-0,3} \cdot t^{0,6}$
<i>, , , , , , , , , ,</i>	
$f_{h, 90/90, k} =$	$28 \cdot d^{-0,6} \cdot t^{0,6}$
<i>J</i> , <i>z c</i> ₁ <i>z c</i> ₁ <i>z</i>	
$f_{h 0 0 0 k} =$	$50 \cdot d^{-0,6} \cdot t^{0,2}$
, n, 90 ₁ 90, n	
$f_{h, 90/90, k} =$	$3,9 \cdot d^{-0,6} \cdot t^{0,7}$
$f_{h \ 90/90 \ k} =$	$7,8 \cdot d^{-0,2} \cdot t^{0,7}$
,, >0 ₁ >0, n	,
	$f_{h,90/90,k} =$ $f_{h,90/90,k} =$ $f_{h,90/90,k} =$ $f_{h,90/90,k} =$

The embedment strength for »fischer PowerFast II« screws in pre-drilled holes, if no other descriptions are given in Table 4, arranged at an angle $\alpha = 90^{\circ}$ to the edge surface (see Figure 4) in EGGER OSB 4 TOP can be calculated with equation (7).

$$f_{h,k} = f_{h,90|00,k} \tag{7}$$

Where

d t

Nominal diameter of the screw [mm]
Penetration depth of the screws para	llel
to the plane surface in EGGER O	SB
TOP 4 panels [mm]	

With

 $f_{h,90|00,k}$ Characteristic value of the embedment strength; the influence of load-grain direction is negligible see table 4 and figure [N/mm²]

Table 4: Characteristic values of the embedment strength

of »fischer PowerFast II« screws in the edge surface				
Material		[N/mm ²]		
EGGER OSB 4 TOP,				
pre-drilled				
t>10 mm	$f_{h,90/00,k} =$	$12 \cdot d^{-0,6} \cdot t^{0,2}$		
Load parallel to plane				
(EN 13986)				
EGGER OSB 4 TOP,				
without pre-drilling				
t >10 mm	$f_{h,90/00,k} =$	$16 \cdot d^{-0,7} \cdot t^{0,1}$		
Load parallel to plane				
(EN 13986)				
EGGER OSB 4 TOP,				
pre-drilled				
t >10 mm	$f_{h,90/00,k} =$	$40 \cdot d^{-0,6} \cdot t^{0,2}$		
Load normal to plane				
(EN 13986)				
EGGER OSB 4 TOP,				
without pre-drilling				
t >10 mm	$f_{h,90/00,k} =$	$52 \cdot d^{-0,7} \cdot t^{0,1}$		
Load normal to plane	0,>0,00,0			
(EN 13986)				

f stischer PowerFast II

3.7.1.5 Effective number of screws per row *n*_{ef}

For laterally loaded screws, the rules for multiple fastener connections in EN 1995-1-1 should be applied.

3.7.2 Yield strength $f_{y,k}$

The characteristic yield strength of the different screw types of »fischer PowerFast II« can be taken into account as shown below.

$$f_{v,k} = 1050 \text{ N/mm}^2$$
 (8)

3.7.3 Yield moment M_{v.Rk}

The characteristic yield moment shall be calculated with the help of equation (9)

$$M_{y,Rk} = 0.15 \cdot 600 \cdot d^{2.65} \tag{9}$$

Where

Characteristic yield moment [Nmm] $M_{v,Rk}$ Nominal diameter of the threaded part [mm] d

3.7.4 Axial withdrawal capacity $f_{ax,k}$

The axial withdrawal capacity is limited by the head pull-through capacity, the withdrawal capacity and the tensile or compressive capacity of the screw.

For »fischer PowerFast II« fully threaded screws, the withdrawal capacity of the thread in the member with the head may be considered instead of the head pull-through capacity.

3.7.4.1 Withdrawal capacity $F_{ax,q,Rk}$ for use in Solid Timber (EN 338, EN 15497), Glued-Laminated Timber (EN 14080) and Laminated Veneer Lumber according to (ETA-14/0354)

In solid timber and glued-laminated timber of softwood, the characteristic withdrawal capacity of »fischer PowerFast II« screws, with an angle of $0^{\circ} \le \alpha \le 90^{\circ}$; shall be calculated according to equation (10).

$$F_{ax,\alpha,Rk} = n_{ef} \cdot k_{ax} \cdot f_{ax,90,k} \cdot d \cdot l_{ef} \cdot \left(\frac{\rho_k}{350}\right)^{0.8}$$
(10)

With

$$k_{ax} = \min \begin{cases} 0, 3 + (0, 7 \cdot \alpha) / 45^{\circ} \\ 1,00 \end{cases}$$
(11)

According to equation (12) the point side penetration length has to be considered between the following ranges.

$$l_{ef} = \min \begin{cases} \frac{4 \cdot d}{\sin \alpha} \\ 20 \cdot d \end{cases}$$
(12)

Where

d Outer thread diameter [mm]

Penetration length of the threaded part l_{ef} according to EN 1995-1-1; For fully threaded screws the thread length including the head length in [mm]

Angle between grain and screw axis [°] α

$$\rho_k$$
 Characteristic timber gross density [kg/m³]

Characteristic withdrawal capacity of the $F_{ax,\alpha,Rk}$ screw with an angle α to the grain [N] Effective number of screws according to n_{ef} EN 1995-1-1

With

Characteristic withdrawal parameter, shown fax,90,k in Table 5

Table 5: Characteri	stic withdrawal p	arameters	
PowerFast II	Solid Timber or		
	Glued-Laminated Timber		
d= 3,0 mm	$f_{ax,90,k} =$	15,5 N/mm ²	
d= 3,5 mm	$f_{ax,90,k} =$	14,9 N/mm ²	
d= 4,0 mm	$f_{ax,90,k} =$	14,5 N/mm ²	
d= 4,5 mm	$f_{ax,90,k} =$	14,1 N/mm ²	
d= 5,0 mm	$f_{ax,90,k} =$	13,8 N/mm ²	
d= 6,0 mm	$f_{ax,90,k} =$	12,9 N/mm ²	
PowerFast II LVL according to			
	ETA-14/035	4	
d= 5,0 mm	$f_{ax,90 90,k} =$	40,0 N/mm ²	
	$f_{ax,90 00,k} =$	32,0 N/mm ²	
	$f_{ax,00 00,k} =$	32,0 N/mm ²	
d= 6,0 mm	$f_{ax,90 90,k} =$	32,0 N/mm ²	
	$f_{ax,90 00,k} =$	24,0 N/mm ²	
	$f_{ax,00 00,k} =$	24,0 N/mm ²	
$\alpha = 90 00$			
		$\alpha = 90 90$	

Figure 2: PowerFast II in hardwood LVL

The characteristic withdrawal capacity in hardwood LVL according to ETA-14/0354 of »fischer PowerFast II« screws with an angle of $0^{\circ} \le \alpha \le 90^{\circ}$ shall be calculated according to equation (13).

$$F_{ax,\alpha,Rk} = n_{ef} \cdot k_{ax} \cdot f_{ax,\alpha|\alpha,k} \cdot d \cdot l_{ef} \cdot \left(\frac{\rho_k}{730}\right)^{0,8}$$
(13)

3.7.4.2 Withdrawal capacity *F*_{ax,Rk} for use in Cross-Laminated Timber

If there are no other technical specification (ETA or hEN) for Cross-Laminated Timber (CLT), the withdrawal capacity for screws can be calculated as following.

Screws in the plane surface

The withdrawal capacity for screws with $d \ge 6$ mm in the plane surface of CLT-elements should be assumed as for solid timber according to equation (10) based on a characteristic density of equation (14), if there are no other specifications are given. For not edge-bonded lamellas, equation (10) is only valid for screws with an outer diameter of $d \ge 5,0$ mm. If necessary gaps between the single lamellas have to be considered.

$$\rho_k = \mathbf{l}, \mathbf{l} \cdot \rho_{lay,k} \tag{14}$$

With

 $\rho_{\text{lay},k}$ Lowest characteristic density of the lamellas in a layer of the CLT-element [kg/m³]

Screws in the narrow side

The withdrawal capacity for screws in the narrow side of CLT-elements should be assumed according to equation (15).

$$F_{ax,Rk} = 20 \cdot d^{0,8} \cdot l_{ef}^{0,9} \tag{15}$$

Screws in the narrow side should be driven perpendicular into the grain of the lamella. The penetration length has to be at least $3 \cdot d + l_{ef}$.

If it is guaranteed that the angle between the lamellas and the screw axis is $\geq 30^{\circ}$ the characteristic withdrawal capacity from equation (15) can be increased of about 25 %.

For screws penetrating more than one layer of Cross-Laminated Timber, the different layers may be considered proportionally.

3.7.4.3 Withdrawal capacity *F*_{ax,Rk} for use in Wood-Based Panels

Screws in the plane surface

The characteristic axial withdrawal capacity of »fischer PowerFast II« screws with an angle of $\alpha = 90|90$ in wood-based panels with a minimum thickness and/or a penetration depth of the threaded part of at least $4 \cdot d$ can be calculated according to equation (16) for applications in the plane surface.

$$F_{ax,\alpha,Rk} = n_{ef} \cdot f_{ax,90|90,k} \cdot d \cdot l_{ef}$$
(16)

Figure 3: PowerFast II in the plane surface

Where

 $f_{ax,90|90,k}$ Characteristic withdrawal parameter in the plane surface, shown in Table 6

$d=3,5 \text{ mm} f_{ax,90 90,k} = 9,0$	N/mm ² N/mm ²
d= 3,5 mm $f_{ax,90 90,k} = 9,0$	N/mm ²
$d=4.0 \text{ mm}$ f on $a_1 = 8.6$	
$d=4,0 \text{ mm}$ $f_{ax,90 90,k}=$ 8,6	N/mm ²
$d=4,5 \text{ mm}$ $f_{ax,90 90,k}=$ 8,3	N/mm ²
	N/mm ²
	N/mm ²
PowerFast II Particleboard (EN 3	<i>.</i>
, <u>,</u>	N/mm ²
, Juni, , , , , , , , , , , , , , , , , , ,	N/mm ²
0	N/mm²
	N/mm ²
	N/mm ²
	N/mm ²
PowerFast II Fibreboards	
(EN 622-2, EN 622-	
	N/mm ²
	N/mm ²
	N/mm ²
	N/mm²
	N/mm ²
	N/mm ²
PowerFast II LVL (EN 14374)	
$\rho_k \ge 480 \text{ kg/m}^3$	
	N/mm ²
	N/mm ²
0	N/mm ²
	N/mm ²
	N/mm ²
$d=6,0 \text{ mm} f_{ax,90 90,k} = 12,0$	N/mm ²

Table 6: Characteristic withdrawal parameters of »fischer PowerFast II« screws in the plane surface

Screws in the narrow side

The characteristic axial withdrawal capacity of »fischer PowerFast II« screws for pre-drilled applications in the edge surface with an angle $\alpha = 90|00$ in wood-based panels with a thickness of at least $5 \cdot d$ arranged in the center of the thickness of the panel with a penetration depth of the threaded part of the screws of at least $6 \cdot d$ can be calculated according to equation (17).

$$F_{ax,\alpha,Rk} = n_{ef} \cdot f_{ax,90|00,k} \cdot d \cdot l_{ef}$$
(17)
$$\alpha = 90|00$$

Figure 4: PowerFast II in the edge surface

Where

 $f_{ax,90|00,k}$ Characteristic withdrawal parameter in the edge surface, shown in Table 7

 Table 7: Characteristic withdrawal parameters of »fischer PowerFast II« screws in the edge surface
 II

»fischer PowerFast II« screws in the edge surface			
PowerFast II	OSB (EN 3	00)	
d= 4,0 mm	$f_{ax,90 00,k} =$	6,0 N/mm ²	
d= 4,5 mm	$f_{ax,90 00,k} =$	5,8 N/mm ²	
d= 5,0 mm	$f_{ax,90 00,k} =$	5,6 N/mm ²	
d= 6,0 mm	$f_{ax,90 00,k} =$	5,1 N/mm ²	
PowerFast II	Particleboard	l (EN 312)	
d= 4,0 mm	$f_{ax,90 00,k} =$	5,6 N/mm ²	
d= 4,5 mm	$f_{ax,90 00,k} =$	5,4 N/mm ²	
d= 5,0 mm	$f_{ax,90 00,k} =$	5,2 N/mm ²	
d= 6,0 mm	$f_{ax,90 00,k} =$	4,7 N/mm ²	
PowerFast II	Fibreboards		
	(EN 622-2, E	EN 622-3)	
d= 4,0 mm	$f_{ax,90 00,k} =$	7,0 N/mm ²	
d= 4,5 mm	$f_{ax,90 00,k} =$	6,5 N/mm ²	
d= 5,0 mm	$f_{ax,90 00,k} =$	6,0 N/mm ²	
d= 6,0 mm	$f_{ax,90 00,k} =$	5,1 N/mm ²	
PowerFast II	LVL (EN 14	374)	
	$\rho_k \ge 480 \text{ kg/r}$	n ³	
d= 4,0 mm	$f_{ax,90 00,k} =$	9,2 N/mm ²	
d= 4,5 mm	$f_{ax,90 00,k} =$	8,8 N/mm ²	
d= 5,0 mm	$f_{ax,90 00,k} =$	8,4 N/mm ²	
d= 6,0 mm	$f_{ax,90 00,k} =$	7,5 N/mm ²	

3.7.4.4 Effective number of screws *n*_{ef}

For axially loaded screws in tension, where the external force is parallel to the screw axis, the rules in EN 1995-1-1, 8.7.2 (8) should be applied.

$$n_{ef} = n^{0.9}$$
 (18)

For inclined screws in timber-to-timber or steel-totimber shear connections, where the screws are arranged under an angle $30^{\circ} \le \alpha \le 60^{\circ}$ between the shear plane and the screw axis, the effective number of screws n_{ef} should be determined with the equation below.

$$n_{ef} = \max \begin{cases} n^{0.9} \\ 0.9 \cdot n \end{cases}$$
(19)

With

n Number of (inclined/cross pairs) screws in a row parallel to the grain direction

For screws as compression reinforcement or inclined screws as fasteners in mechanically jointed beams or columns $n_{ef} = n$.

3.7.5 Head pull-through capacity *f*_{head,k}

3.7.5.1 Head pull-through capacity *f_{head,k}* for use in Solid Timber (EN 338, EN 15497), Glued-Laminated Timber (EN 14080) and Laminated Veneer Lumber according to (ETA-14/0354)

The characteristic head pull-through capacity of »fischer PowerFast II« screws in solid timber can be calculate as following.

$$F_{head,Rk} = n_{ef} \cdot f_{head,k} \cdot d_h^2 \cdot \left(\frac{\rho_k}{350}\right)^{0,8}$$
(20)

For timber elements with a thickness of at least 20 mm, the characteristic value of the head pull-through parameter $f_{head,k}$ can be taken into account as following.

Table 8: Head pull-through capacities in Solid Timber, GLT, CLT and LVL

Countersunk and Raised Countersunk,				
see Annex A1 and A2				
d= 3,0 mm	$d_{h} = 6,0 \text{ mm}$	fhead,k=19,0 N/mm ²		
d= 3,5 mm	d _h = 7,0 mm	fhead,k=16,3 N/mm ²		
d= 4,0 mm	d _h = 8,0 mm	f _{head,k} =15,0 N/mm ²		
d= 4,5 mm	d _h = 8,8 mm	$f_{head,k}$ =14,2 N/mm ²		
d= 5,0 mm	d _h = 9,8 mm	$f_{head,k}$ =13,4 N/mm ²		
d= 6,0 mm	d _h =11,8mm	$f_{head,k}$ =13,0 N/mm ²		
Washer head, so	ee Annex A4			
d= 5,0 mm	d _h =11,0mm	$f_{head,k} = 20,0 \text{ N/mm}^2$		
d= 6,0 mm	d _h =13,5mm	$f_{head,k} = 15,5 \text{ N/mm}^2$		
Step Countersunk head, see Annex A5				
d= 5,0 mm	d _h =11,0mm	$f_{head,k} = 19,5 \text{ N/mm}^2$		
d= 6,0 mm	d _h =13,5mm	$f_{head,k} = 15,0 \text{ N/mm}^2$		
Screw with clamping effect, see Annex A6				
d= 3,5 mm	d= 7,0 mm	$f_{head,k} \cdot d_h^2 = 1220 \text{ N}$		
d= 4,0 mm	d= 8,0 mm	$f_{head,k} \cdot d_h^2 = 1485 \text{ N}$		
d= 4,5 mm	d= 9,0 mm	$f_{head,k} \cdot d_h^2 = 1750 \text{ N}$		

3.7.5.2 Head pull-through capacity *f*_{head,k} for use in Wood-Based Panels

For the following wood-based panels described in Chapter 1 with a thickness of more than 20 mm the head pull-through parameter can constitute with

$$f_{head,k} = 10 \text{ N/mm}^2 \tag{21}$$

For wood-based panels with a thickness between 12 mm and 20 mm the characteristic value of the head pull-through parameter can be calculated with

$$f_{head,k} = 8 \text{ N/mm}^2 \tag{22}$$

For wood-based panels with a thickness of less than 12 mm the characteristic head pull-through capacity

shall be calculated with $f_{head,k}=8 N/mm^2$ with a limit of 400 N complying with a minimum thickness of the wood based panels of 1,2 ·d. In addition, to apply the minimum thickness of *Table 9*.

Table 9: Minimum thickness of Wood-Based Panels	š
be fixed on the side of the screw head	

	Min.
Wood-based panel	thickness
	[mm]
Plywood	6
Oriented Strand board OSB	8
Solid wood panels	12
Particleboards	8
Cement bonded particle boards	8
Fibreboards (hard boards and	6
medium boards)	0
Gypsum fibre and Plasterboards	12

3.7.5.3 Head pull/push-through capacity of the FAFS-Clip of adjustable frame screw

The characteristic head pull-through capacity in softwood of the FAFS–Clip of adjustable frame screw can be calculated for tension loads onto the screws with

$$F_{FAFS,t,Rk} = 2200 \text{ N}$$
 (23)

and for compression loads (push-through capacity) onto the screws with

$$F_{FAFS,c,Rk} = 1290 \text{ N}$$

3.7.6 Tensile capacity $f_{tens,k}$

The characteristic tensile capacity $f_{tens,k}$ of »fischer PowerFast II« screws depending on the outer diameter is given below.

Table 10: Tensile capacity					
PowerFast II	PowerFast II				
d= 3,0 mm	$f_{tens,k} =$	3,2 kN			
d= 3,5 mm	$f_{tens,k} =$	4,1 kN			
d= 4,0 mm	$f_{tens,k} =$	5,2 kN			
d= 4,5 mm	$f_{tens,k} =$	6,3 kN			
d= 5,0 mm	$f_{tens,k} =$	8,9 kN			
d= 6,0 mm	$f_{tens,k} =$	13,1 kN			

The tear-off capacity of the screw head is greater than the tensile capacity of the screw.

3.7.7 Compression capacity

The design compressive capacity $F_{ax,Rd}$ of »fischer PowerFast II« screws with full thread along the length embedded in timber shall be calculated as following.

$$F_{ax,Rd} = \min \begin{cases} F_{ax,Rd} \\ F_{ki,Rd} \end{cases}$$
(25)

Where

 $F_{ax,Rd}$ According to equation (10) $F_{ki,Rd}$ According to equation (26)

 $\kappa - 1$

$$F_{ki,Rd} = \kappa_c \cdot N_{pl,d} \tag{26}$$

for $\overline{\lambda} < 0.2$

With

$$\kappa_c = \frac{1}{k + \sqrt{k^2 - \overline{\lambda}^2}} \quad \text{for } \overline{\lambda} > 0,2 \quad (27)$$

and

$$k = 0, 5 \cdot \left[1 + 0, 49 \cdot \left(\overline{\lambda} - 0, 2 \right) + \overline{\lambda}^2 \right]$$
 (28)

The relative slenderness ratio shall be calculated with

$$\overline{\lambda} = \sqrt{\frac{N_{pl,k}}{N_{ki,k}}} \tag{29}$$

With the characteristic value for the axial capacity in case of plastic analysis referred to the outer thread diameter. Yield strength $f_{y,k}$ see equation (8)..

$$N_{pl,k} = \frac{(0,7 \cdot d)^2 \cdot \pi}{4} \cdot f_{y,k}$$
(30)

And the characteristic ideal elastic buckling load

$$N_{ki,k} = \sqrt{c_h \cdot E_s \cdot I_s} \tag{31}$$

With the

Elastic foundation of the screw:

$$c_h = (0,19+0,0084 \cdot d) \cdot \rho_k \cdot \left(\frac{\alpha}{180^\circ} + 0,5\right)$$
 (32)

Modulus of elasticity:

$$E_s = 210.000 \text{ N/mm}^2$$
 (33)

Second moment of area:

$$I_{s} = \frac{\pi \cdot (0, 7 \cdot d)^{4}}{64}$$
(34)

Note: The compressive capacity must be modified for $f_{ax,d}$ with the factors k_{mod} and γ_M for timber according

to EN 1995-1-1 while $N_{pl,d}$ the partial-factor $\gamma_{M,1}$ for steel buckling according to EN 1993-1-1 and/or national standards respectively have to be considered.

3.7.8 Combined laterally and axially loaded screws

For connections subjected to a combination of axial and lateral loads, the following expression has to be considered according to equation (35).

$$\left(\frac{F_{ax,Ed}}{F_{ax,Rd}}\right)^2 + \left(\frac{F_{\nu,Ed}}{F_{\nu,Rd}}\right)^2 \le 1$$
(35)

With

 $F_{ax,Ed}$ Axial design action [N]

 $F_{v,Ed}$ Lateral design action [N]

- $F_{ax,Rd}$ Design load-carrying capacity of an axially loaded screw [N]
- $F_{v,Rd}$ Design load-carrying capacity of a laterally loaded screw [N]

3.7.9 Slip modulus in the serviceability limit state

Laterally loaded screws

For laterally loaded »fischer PowerFast II« screws, the slip modulus, pre-drilled or non-pre-drilled, for the serviceability limit state (SLS) should be calculated according to EN 1995-1-1 independent of the load grain-direction angle α with equation (36).

$$K_{v,ser} = k_{st} \cdot k_{sp} \cdot C_{v,ser} \tag{36}$$

With

$$k_{st} = \begin{cases} 1 & \text{for timber-timber connections} \\ 2 & \text{for steel-timber connections} \end{cases}$$

 k_{sp} Number of shear planes

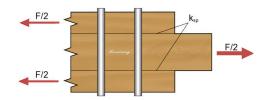


Figure 5: Definition of the shear plane k_{sp}

Where

 ρ_m Mean timber density [kg/m³]

With

 $C_{v,ser}$ Slip modulus in SLS, Table 11[N/mm]

Appendix	11	
----------	----	--

Table 12: Slip modules for axially loaded screws, only plane surfaces				
Material	C _{ax,ser} [N/mm]			
Softwood				
$\rho_k \ge 350 \text{ kg/m}^3$	20 11			
independend of the	$32 \cdot d \cdot l_{ef}$			
angle α				
Hardwood				
$\rho_k \ge 510 \text{ kg/m}^3$	20 1 1			
independend of the	$38 \cdot d \cdot l_{ef}$			
angle α				
OSB				
t > 5 mm	$10 \cdot d \cdot l_{ef}$			
(EN 300)				
Fibreboards				
t > 3 mm	15·d·l _{ef}			
(EN 622-2, EN 622-3)				
Particleboards				
t > 5 mm	$10 \cdot d \cdot l_{ef}$			
(EN 312)				
LVL (EN 14374)				
Soft- and Hardwood				
$\rho_k \ge 480 \text{ kg/m}^3$	$28 \cdot d \cdot l_{ef}$			
a=90 90				
see Figure 2				

3.7.10 Slip modulus in the ultimate limit state

To consider the slip modulus K_u in the ultimate limit state (ULS) K_{ser} has to be reduced for both directions (laterally and axially) according to EN 1995-1-1 with

$$K_{\mu} = 2/3 \cdot K_{ser} \tag{38}$$

3.7.11 Minimum timber cross section, end- and edge distances

For structural timber members, minimum spacing and distances for screws in pre-drilled holes are given in EN 1995-1-1 clause 8.3.1.2 and table 8.2 as for nails in pre-drilled holes. Here, the outer thread diameter d must be considered.

Minimum thickness for structural members is in general t = 24 mm.

The FAFS-Clips may only be used in solid timber made of softwood. For the FAFS-Clip the minimum distances to the end grain in softwood has to be 60 mm. The minimum cross section for non-predrilled applications in softwood has to be at least $30 \times 50 \text{ mm}^2$, minimum width of 50 mm. With the minimum distances $a_1 \ge 12 \cdot d$ and $a_{4,t} \ge 4 \cdot d$ with d = 5 mm (see Annex A7). Predrilling is allowed with a diameter of 5 mm.

	Арре
Table 11: Slip modules for laterally load	led screws
Material	$C_{v,ser}$
	[N/mm]
Solid Timber	
Glued-Laminated Timber	$a^{1,5} d$
Softwood and	$\frac{\rho_m^{1,5} \cdot d}{23}$
Hardwood	23
(EN 338, EN 15497, EN 14080)	
OSB	
t > 5 mm	$6,8\cdot ho_m\cdot d^{-0,4}$
(EN 300)	
Plywood	
t > 4 mm	740
(EN 314-2)	
Fibreboards	
t > 3 mm	$9 \cdot \rho_m \cdot d^{-0,9}$
(EN 622-2, EN 622-3)	
Particleboards	
t > 5 mm	$3 \cdot \rho_m \cdot d^{-0,4}$
(EN 312)	
Gypsum plasterboards	
t≥9 mm	$6700 \cdot d^{-087}$
(EN 520)	
Gypsum boards with fibrous	

(EN 338, EN 15497, EN 14080)	
OSB	
t > 5 mm	$6,8\cdot\rho_m\cdot d^{-0,4}$
(EN 300)	_
Plywood	
t > 4 mm	740
(EN 314-2)	
Fibreboards	
t > 3 mm	$9 \cdot \rho_m \cdot d^{-0,9}$
(EN 622-2, EN 622-3)	_
Particleboards	
t > 5 mm	$3 \cdot \rho_m \cdot d^{-0,4}$
(EN 312)	
Gypsum plasterboards	
t≥9 mm	$6700 \cdot d^{-087}$
(EN 520)	
Gypsum boards with fibrous	
reinforcement	1 4 - +0.7
t≥9 mm	$1,4\cdot\rho_m\cdot d^{-0,7}$
(EN 15283-2)	
LVL	a 1,5 J
Soft- and Hardwood	$\underline{\rho_m^{1,5} \cdot d}$
(EN 14374)	20

Axially loaded screws

For axially loaded screws the slip modulus for the serviceability limit state (SLS) can be calculated according to equation (37).

$$K_{ax,ser} = C_{ax,ser} \tag{37}$$

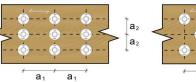
With

d Outer thread diameter [mm]

- lef Penetration length of the threaded part in [mm]
- $C_{v,ser}$ Slip modulus in SLS, Table 12 [N/mm]

3.7.11.1 Solid Timber (EN 338, EN 15497) and Glued-Laminated Timber (EN 14080)

Minimum distances and spacing for laterally loaded »fischer PowerFast II« screws in non-pre-drilled holes in members of solid timber, glued-laminated timber or similar glued products with a minimum thickness $t = 12 \cdot d$ and a minimum width of 60 mm, should be chosen with Table 14


	Table 13: Hea	d shapes, see	Table 14 to	Table 17
--	---------------	---------------	-------------	----------

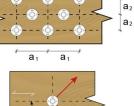
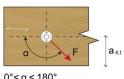
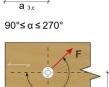

¹⁾ Head shapes	Description
A	Screws with countersunk, step countersunk according to Annex A1, A2 and A6
	Screws with pan head and washer head according to Annex A3, A4 and A5
STEEL PLATE	Screws to fix steel plates on the head side according to Annex A1, A2, A3, A4, A5

Table 14: Laterally loaded screws: Minimum end- and edge distances for solid timber and glued-laminated timber products with a maximum gross density of 480 kg/m³ for non pre-drilled screws shown in Annex A1 to A5

Solid Timber and Glued-Laminated Timber (EN 338, EN 15497 and EN 14080)


and the second sec							
Head	Minii	num	spa	cing and d	listan	ces	
shape ¹⁾	<i>a</i> 1	a_2	аз,с	<i>a</i> _{3,t}	a4,c	<i>a</i> _{4,t}	
A A	$(5+5\cdot \cos\alpha)\cdot d$	5∙d	7∙d	(7+5·cosα)∙d	5·d	(5+2·sinα)·d	
Î	$(5+5\cdot \cos\alpha)\cdot d$	5·d	7∙d	(5+5·cosα)∙d	5∙d	(5+2·sinα)·d	
STEEL	$3,5\cdot(1+ \cos\alpha)\cdot d$	3,5∙d	7∙d	(5+5·cosα)·d	5∙d	(5+2·sinα)·d	



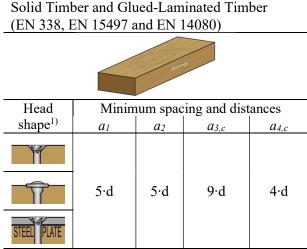
*<u>a_{3,t}</u> -90°≤α≤90°

F

α

a_{4,0} 180°≤α≤360°

0°<α<180°


NT - 4 - 4! -	
Notatio	ns

Inotations	
<i>(</i>),	Spacing a_1 parallel to the grain of
a_1	solid timber
<i>a</i> .	Spacing a_2 perpendicular to the grain
a_2	of solid timber
	Distance $a_{3,c}$ from centre of the screw-
$a_{3,c}$	part in timber to the unloaded end
	grain of solid timber
	Distance $a_{4,c}$ from centre of the screw-
$a_{3,t}$	part in timber to the loaded end grain
	of solid timber
	Distance $a_{4,c}$ from centre of the screw-
$a_{4,c}$	part in timber to the unloaded edge of
	solid timber
	Distance $a_{4,t}$ from centre of the screw-
$a_{4,t}$	part in timber to the loaded edge of
·	solid timber
1) Head shape see	Table 13

¹⁾ Head shape see Table 13

Minimum distances and spacing for exclusively axially loaded »fischer PowerFast II« screws in nonpredrilled holes in members of solid timber (softwood and hardwood), glued laminated timber or similar glued products (softwood and hardwood) with a minimum thickness $t = 12 \cdot d$ and a minimum width of 60 mm, whichever is the greater, may be taken as:

 Table 15: Axially loaded screws: Minimum end- and
 edge distances for Solid Timber and
 Glued-Laminated Timber products

¹⁾ Head shape see Table 13

Spacing a_2 perpendicular to the grain may be reduced from $5 \cdot d$ to $2, 5 \cdot d$, if the condition $a_1 \cdot a_2 \ge 25 \cdot d^2$ is fulfilled. For Douglas fir members minimum spacing and distances parallel to the grain shall be increased by 50 %.

Minimum distances from the unloaded edge perpendicular to the grain may be reduced to $3 \cdot d$ also for timber thickness $t < 5 \cdot d$, if the spacing parallel to the grain and the end distance is at least $25 \cdot d$.

3.7.11.2 Cross-Laminated Timber

Unless specified otherwise in the technical specification (ETA or hEN) of Cross-Laminated Timber, minimum distances and spacing for screws in the plane surface of Cross-Laminated timber members with a minimum thickness $t = 10 \cdot d$ may be taken as shown in Table 16 and Table 17.

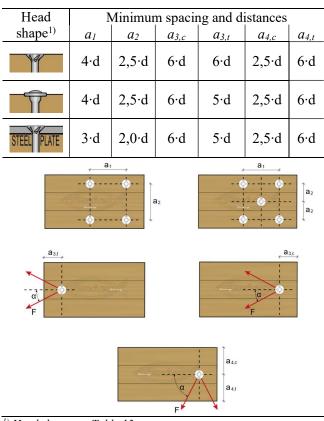

Unless specified otherwise in the technical specification (ETA or hEN) of Cross-laminated timber, minimum distances and spacing for screws in the edge surface of Cross-laminated timber members with a minimum thickness $t = 10 \cdot d$ and a minimum penetration depth perpendicular to the edge surface of $10 \cdot d$ may be considered.

Table 16: Laterally and axially loaded screws: Minimum end- and edge distances for Cross-Laminated Timber in the plane surface

Cross-Laminated Timber

- Screws in the plane surface

¹⁾ Head shape see Table 13

Table 17: Laterally and axially loaded screws: Minimum endand edge distances for Cross-Laminated Timber in the edge surface

Cross-Laminated Timber

- Screws in the edge surface

Head	Minimum spacing and distances					
shape ¹⁾	a_1	a_2	<i>a</i> _{3,c}	<i>a</i> _{3,t}	$a_{4,c}$	$a_{4,t}$
	10·d	3·d	7·d	12·d	5·d	5·d
Î	10·d	3·d	7·d	12·d	5·d	5·d
STEEL PLATE	7·d	3·d	7·d	12·d	5∙d	5·d
a _{3,c} a ₁	a,	a _{3,t}	a *	_{3,c} a₁	a₁	a _{3,c}
$F \xrightarrow{ \begin{array}{c} \\ \\ \end{array}} \begin{array}{c} \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} $						

Notations

a_1	Spacing a_1 parallel to the plane direction						
<i>u</i> ₁	of the CLT-panel						
a	Spacing a_2 perpendicular to plane						
a_2	direction of the CLT-panel						
	Distance $a_{3,c}$ from centre of the screw-						
$a_{3,c}$	part in timber to the unloaded edge in						
	plane direction of the CLT-panel						
	Distance $a_{3,t}$ from centre of the screw-						
$a_{3,t}$	part in timber to the loaded edge in plane						
,	direction of the CLT-panel						
	Distance $a_{4,c}$ from centre of the screw-						
	part in timber to the unloaded edge						
$a_{4,c}$	perpendicular to the plane direction of						
	the CLT-panel						
	Distance $a_{4,t}$ from centre of the screw-						
	part in timber to the loaded edge						
$a_{4,t}$	perpendicular to the plane direction of						
	the CLT-panel						
1) 11 1 1	T 11 12						

¹⁾ Head shape see Table 13

For a crossed screw couple, the minimum spacing between the crossing screws should be at least $1, 5 \cdot d$.

3.8 Durability against corrosion

3.8.1 Corrosion protection in Service Class 1 and 2

The »fischer PowerFast II« screws are produced from carbon steel. They are zinc-plated (e.g. yellow-zinced or blue-zinced), bonus-zinc-coated, burnished, nickel-plated or brass-plated. The mean thickness of the zinc-plated screws is min. 5 μ m.

3.9 General aspects related to the intended use of the product

The screws are manufactured in accordance with the provisions of the European Technical Assessment using the automated manufacturing process as identified during the inspection of the plant by the assessment body issuing the ETA and the notified body and laid down in the technical documentation. The installation shall be carried out in accordance with Eurocode 5 or an appropriate national code and in accordance with the instructions from fischerwerke GmbH & Co. KG.

4 Attestation and verification of constancy of performance (AVCP)

4.1 AVCP system

According to the decision 97/176/EC of the European Commission, as amended, the system(s) of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) is 3.

Annex A: Product details and definitions Table A1: Screw sizes and material

	Pow	erFast	ll - Self-	drilli	ng sc	rew -	Coun	tersur	nk hea	ad wit	h full	or pa	artial	threa	d
						ls ²⁾									
		Linde	erhead	- 		lgf									
		millin	ng pockets ¹⁾	g.						,	Trade r	mark ¹⁾			
			لم ب										3 •)		
			<u> </u>	ĥ			lgp			Drive PZ	2	Driv	e ve TX		
	1)		Shank ribs ¹⁾					Cor	emiller ¹⁾						
	¹⁾ optiona Carbon												Figure I	not to scale	9
			treatments:			ated, blu brass pl		olated, b	lue zinc	-plated 2	≥12µm,	bonus-z	zinc-coa	ted, bur	nishec
N	omin	al diame	eter	3	,0	3	3,5		,0	4	,5	5	,0	6	6,0
d		er thread			00		50		00		50		10		,00
	-	w. deviation or thread di),25 95),25 20),30 50		,30 75		,30 25),30 ,95
d1		w. deviatio		-	9 <u>5</u>),18	-	<u>20</u>),18),20		,20		23),20		, <u>95</u>),20
d		id diamete			00		00		00		, <u>20</u> 80		80		,80
dh	-	w. deviatio),50	-),50),60		,60		,60),60
ds		nk diamet			25		60		90		20		70		,30
h		w. deviation Id height	on),15 30),15 50),15 80		,15 90		0,15 40),15 50
11		rive TX			0	2,50 10 20			20	2,90 20		3,40 20 25		3,50 30	
		rive PZ			1	2			2		2		2	3	
	Screv	v length l	s ²⁾	Star	ndard tl	nread le	ength	l _{gf} = Ful	II thread	1 l _{gp} =	Partial	thread	Tolera	ance: ±	2,03)
Nom lenç		min	max	l _{gf}	l _{gp}	l _{gf}	l _{gp}	l _{gf}	l _{gp}	l _{gf}	l _{gp}	l _{gf}	l _{gp}	l _{gf}	l _{gp}
20		l₅ –1,05	l _s +1,05	16		16									
2		l _s –1,25	l _s +1,25	21	18	21	18	20	18	20					
30		l _s –1,25	l _s +1,25	26	18	26	18	25	18	25	18	24			
38 40		ls -1,50	l _s +1,50 l _s +1,50	31 36	24 28	31 36	24 28	30 35	24 28	30 35	24 28	29 34	24 28	28 33	28
4		l _s –1,50 l _s –1,50	l _s +1,50	41	30	41	30	40	30	40	30	39	30	38	30
50		l _s –1,50	l _s +1,50			46	30	45	30	45	30	44	30	43	30
5	5	l _s –1,75						50	36	50	36	49	36	48	36
60		l _s –1,75						55	36	55	36	54	36	53	36
70			l _s +1,75					ļ	42	65	42	64	42	63	42
80 90		ls -1,75	l _s +1,75 l _s +2,00						45	75	45	74	45 54	73	45 54
10		ls –2,00				1							60		60
11		ls –2,00											70		70
12		l _s –2,00	l _s +2,00										70		70
400		ps of 10m													
130-	300	ls -3,00	ls +3,00					<u> </u>					A 11		70
130-	in ste 300	ps of 10m l _s –3,00		60 mm	l _s with s	shank ril	bs							sizes ir	7
len	gths ai	e allowed	s with l₅ mi .,l _{gp} ≤ 18mi					-							
fischer PowerFast II Annex A1															
			Sc	rew si	zes ar	nd mate	erial								

Table A2: Screw sizes and material

Powe	PowerFast II - Self-drilling screw – Raised countersunk head with full- or partial thread													
		-			ls ²⁾									
	Underhead													
	milling poo	kets ¹⁾								Tra	ade mark ¹⁾			
						^ ^ ^ ¯	A			\mathbf{x}		Ta	`	
		þ	heed	ZZI	KKK	LED						(())	
		h	_/	-		lgp \			Drive	PZ		Drive T	х	
1)	Shank	ribs ¹⁾					Co	oremiller ¹⁾						
¹⁾ optional	n Steel											F	igure not	to scale
	ble surface t	reatments	: yellow nickel	zinc-pla plated, l	ated, blu orass pla	e zinc-p ated	lated, b	lue zinc	-plated 2	≥12µm,	bonus-z	zinc-coa	ted, bur	nished,
Nomi	nal diame	eter	3	,0	3	,5	4	,0	4	,5	5	,0	6	5 ,0
	uter thread			00		50		00		50		10		,00
AI	low. deviation ner thread di) <u>,25</u> 95		, <u>25</u> 20		,30 50		,30 75		,30 25),30 ,95
d1	low. deviatio			95),18		20 ,18		,20		,20		23),20		,95),20
d	ead diamete			00	7,	00		00		80		80		,80
AI	low. deviatio),50 05		<u>,50</u>		,60		,60		,60		0,60
	nank diamet low. deviatio			25),15		60 ,15		90		20 ,15		70 ,15		,30),15
	ead height		1,	80	2,	30	2,	± 0,15 2,40		2,70		00		,60
	Drive TX			0	10 20		20 2		20		20	25		30
0	Drive PZ	2)		1	-	2		-	2 d I Im =Partial		2		3	
Nominal	ew length l	s ² /	Standard thread length		l _{gf} = Fui	i thread	ם נ _{פף} =ו 1	Partial	Inread		ance: ±	2,037		
length	min	max	ι _{gf}	l _{gp}	ι _{gf}	l _{gp}	l _{gf}	l _{gp}	l _{gf}	l _{gp}	ι _{gf}	l _{gp}	ι _{gf}	l _{gp}
20 25	l _s –1,05	l _s +1,05	16 21	18	16 21	10	20	18	20					
30	l _s –1,25 l _s –1,25	l _s +1,25 l _s +1,25	21	18	21	18 18	20	18	20 25	18	24			
35	l _s –1,50	ls +1,50	31	24	31	24	30	24	30	24	29	24	28	
40	l _s –1,50	l _s +1,50	36	28	36	28	35	28	35	28	34	28	33	28
45 50	l _s –1,50	l _s +1,50 l _s +1,50	41	30	41 46	30 30	40 45	30 30	40 45	30 30	39 44	30 30	38 43	30 30
55	l _s –1,75				10	00	50	36	50	36	49	36	48	36
60	l _s –1,75	l _s +1,75					55	36	55	36	54	36	53	36
70		ls +1,75						42	65	42	64	42	63	42
80 90	l _s −1,75	l _s +1,75 l _s +2,00						45	75	45	74	45 54	73	45 54
100	$l_{s} = 2,00$	ls +2,00										60		60
110	l _s –2,00	l _s +2,00										70		70
120	l _s -2,00	ls +2,00										70		70
130-300	teps of 10m ls -3,00	m ls +3,00												70
 Screws with partial thread > 60 mm l_s with shank ribs ²⁾ Other screw lengths with l_s min ≤ l_s ≤ l_s max and other thread lengths l_{gf} resp. l_{gp} ≥ 4xd up to max. standard thread lengths are allowed ³⁾ For 10 mm ≤ l_{gf} resp. l_{gp} ≤ 18 mm → tolerance ±1,5mm and for 18mm < l_{gf} resp. l_{gp} ≤ 30 mm → tolerance ±1,7 mm fischer PowerFast II 														
	Screw sizes and material													

Table A3: Screw sizes and material

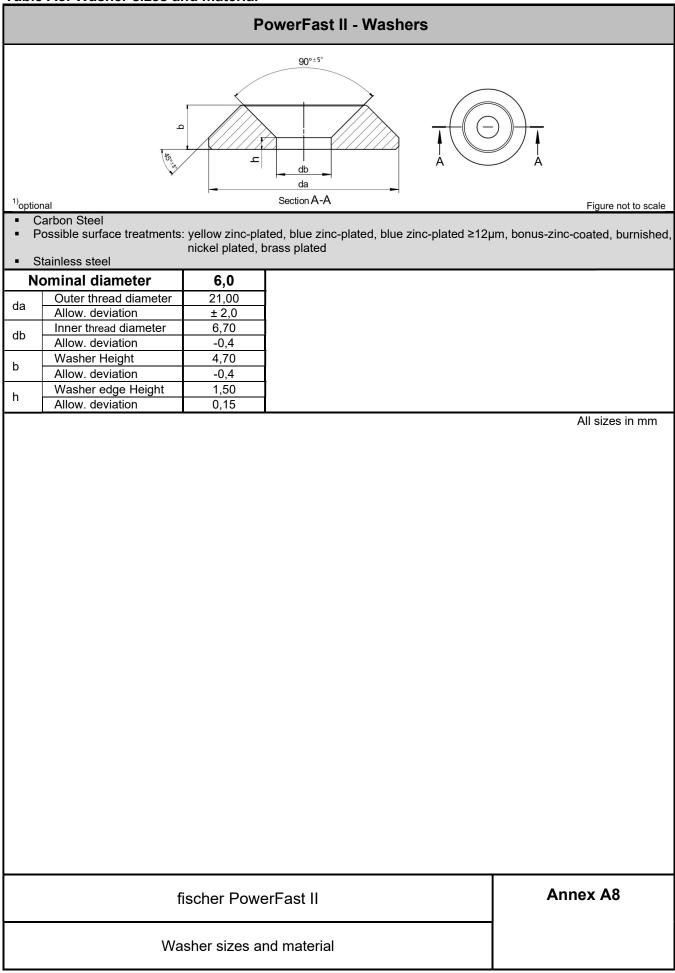
	PowerFast II - Self-drilling screw - Pan head with full- or partial thread														
						ls ²⁾									
			-	-		lgf		-							
				-								de mar $k^{1)}$	N		
				ds							*				
			ਰ 🗍	10.00	<u>III</u>	ITTI	IBA	i defi	<u>a 19</u>	(•‡			(0)		
			h		_		lgp			Drive	PZ		Drive TX	[
1)		Shanl	k ribs ¹⁾					Co	oremiller ¹⁾						
¹⁾ option	^{nal} arbon	Steel											Fi	gure not t	o scale
			reatments	: yellow nickel	zinc-pla plated, l	ated, blu prass pla	e zinc-p ated	olated, b	lue zinc	-plated 2	≥12µm,	bonus-z	cinc-coa	ted, bur	nished,
No		al diame			,0		,5		,0		,5		,0		,0
d		er thread o w. deviatio			00),25		50 ,25		00),30	,	50 ,30		10 ,30		00 0,30
d.		er thread di			95		20		50		75		,30 25		95
d1		w. deviatio),18		,18),20		,20		,20),20
dh		id diamete w. deviatio			00),50		00 ,50		00),60		00 ,60		,00 ,60		2,00),60
ds		nk diamet			25		60		90		20		,00 70		30
		w. deviatio	on),15),15 50),15),15		,15),15
h		id height ive TX			30 0		50 20	2,80 20		2,80 20		3,40 20 25		3,40 30	
		rive PZ			1	2		2		2		2		3	
-		v length l	s ²⁾	Star	ndard th	nread le	ength	l _{gf} = Ful	ll thread	1 l _{gp} =	Partial	thread	Tolera	ance: ±	2,03)
Nomi leng	-	min	max	l _{gf}	l _{gp}	l _{gf}	l _{gp}	l _{gf}	l _{gp}	l _{gf}	l _{gp}	l _{gf}	l _{gp}	l _{gf}	l _{gp}
20 25		l _s –1,05	ls +1,05	16 21	18	16 21	18	20	18	20					
30		ls –1,25 ls –1,25	l _s +1,25 l _s +1,25	26	18	26	18	20	18	20	18	24			
35		l _s –1,50	l _s +1,50	31	24	31	24	30	24	30	24	29	24	28	
40 45		ls –1,50 ls –1,50	l _s +1,50 l _s +1,50	36 41	28 30	36 41	28 30	35 40	28 30	35 40	28 30	34 39	28 30	33 38	28 30
50		$l_s = 1,50$ $l_s = 1,50$		41	- 50	46	30	45	30	45	30	44	30	43	30
55		ls –1,75						50	36	50	36	49	36	48	36
60 70		ls -1,75	,					55	36 42	55 65	36 42	54 64	36 42	53 63	36 42
80		l _s –1,75 l _s –1,75							42	75	42	74	42	73	42
90)	l _s –2,00											54		54
100 110		l _s –2,00	ls +2,00										60 70		60 70
120		l _s –2,00 l _s –2,00											70		70
		ps of 10m	m												
130-3	300	ls -3,00	ls +3,00										Δ١١	sizes in	70 mm
• So	crews	with partia	al thread >	60 mm	l₅ with s	shank rit	os							51263 11	
leng	 ²⁾ Other screw lengths with l_s min ≤ l_s ≤ l_s max and other thread lengths l_{gf} resp. l_{gp} ≥ 4xd up to max. standard thread lengths are allowed ³⁾ For 10 mm ≤ l_{gf} resp.,l_{gp} ≤ 18 mm → tolerance ±1,5 mm and for 18 mm < l_{gf} resp. l_{gp} ≤ 30 mm → tolerance ±1,7 mm 														
			f	ischei	Powe	erFast						ļ	Annex	x A 3	
			Sc	rew si	zes ar	id mate	erial								

Table A4: Screw sizes and material

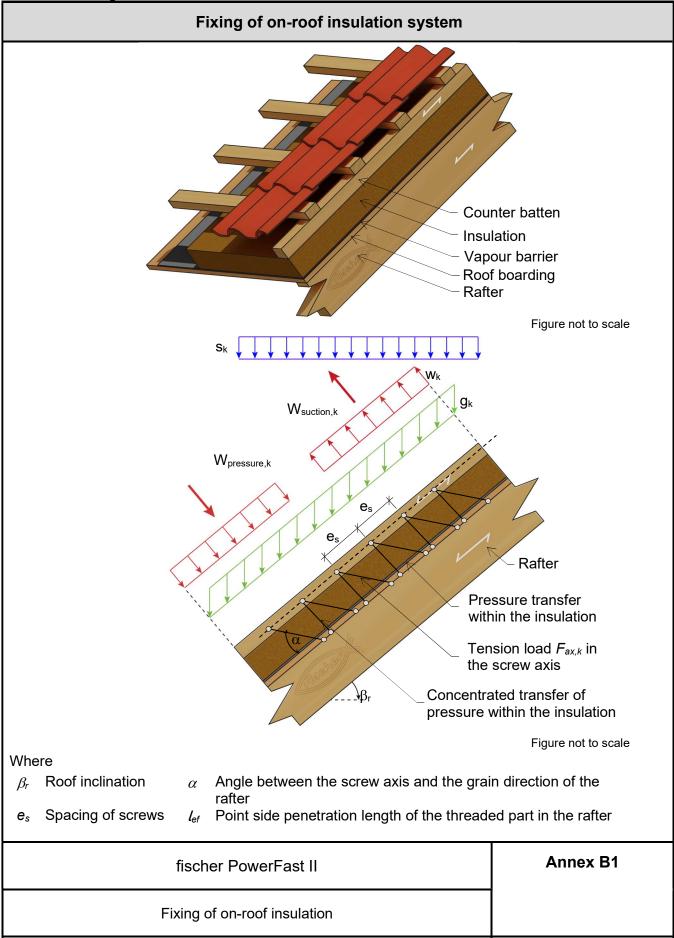
F	PowerFast II - Self-drilling screw – Washer head with full- or partial thread							
		ł			ls ²⁾			
			-		lgf		-	
			~					Trade mark ¹⁾
		T 10	ő				Ø	
		ਤ 🗍	1000	111	A A A A	IN		
			/			lgp		
	Ohan	n .	-/	-		чур		2 Drive TX
¹⁾ optional	Shan	k ribs''					Coremiller'	Figure not to scale
	n Steel							Figure net to sould
 Possib 	ole surface l	treatments			ated, blu brass pl		olated, blue zinc-plated ≥ -	12µm, bonus-zinc-coated, burnished,
	nal diam		5	,0	6	,0		
	uter thread			10		00		
All	low. deviation ner thread d			,30 25),30 ,95	1	
	low. deviation			25 ,20		95),20	1	
. He	ead diamete			,00		5,50	1	
d	low. deviatio			,00		1,00]	
da Sh	nank diamet	ter	3,	70	4,	30		
Al	low. deviation	on		,15		0,15		
	ead height			00		10		
	Drive TX Drive PZ		20	25 2		30 3		
	ew length l	_2)				-	l lat = Full thread lan =F	Partial thread Tolerance: $\pm 2,0^{3}$
Nominal		S	Otar					
length	min	max	l _{gf}	l _{gp}	l _{gf}	l _{gp}		
20	l _s –1,05	l _s +1,05						
25	ls –1,25	l _s +1,25						
30	ls –1,25	ls +1,25	24					
35	l _s −1,50	l _s +1,50	29	24	28			
40 45	ls -1,50	ls +1,50	34 39	28 30	33 38	28 30		
45 50	l _s –1,50 l _s –1,50	l _s +1,50 l _s +1,50	44	30	43	30		
55	ls -1,75		49	36	48	36		
60	l _s –1,75		54	36	53	36		
70	l _s –1,75	l _s +1,75	64	42	63	42		
80	ls –1,75		74	45	73	45		
90	l _s –2,00			54	<u> </u>	54	4	
100	l _s –2,00			60		60	-	
110 120	ls -2,00	l _s +2,00 l _s +2,00		70		70	1	
-	teps of 10m			10		10	1	
130-300	ls –3,00	ls +3,00				70	1	
		-					-	All sizes in mm
 Screw 	s with partia	al thread >	60 mm	l _s with s	shank ri	bs		
²⁾ Other screw lengths with l _s min ≤ l _s ≤ l _s max and other thread lengths l _{gf} resp. l _{gp} ≥ 4xd up to max. standard thread lengths are allowed								
³⁾ For 10 n	³⁾ For 10 mm ≤ l_{gf} resp., l_{gp} ≤ 18 mm → tolerance ±1,5mm and for 18 mm < l_{gf} resp. l_{gp} ≤ 30mm → tolerance ±1,7 mm							
		f	ischer	Powe	erFast	t II		Annex A4
	Screw sizes and material							

Table A5: Screw sizes and material

PowerF	PowerFast II - Self-drilling screw – Step Countersunk head with full- or partial thread						
		-			ls ²⁾ lgf		
	rade mark ¹⁾						
	ę		har		III	TAP	
¹⁾ optional	lgp Drive PZ Drive TX Shank ribs ¹⁾						
 Carbon 		reatments	: yellow	zinc-pla	ated, blu	e zinc-p	Figure not to scale blated, blue zinc-plated ≥12µm, bonus-zinc-coated, burnished,
Namin					brass pla		· · · · · · · · · · · · · · · · · · ·
Oute	al diame			,0 10	-	,0 00	1
d Allo	w. deviatio	on	± 0	,30	± 0	,30	1
	er thread di w. deviatio			25 ,20		95 ,20	4
Hea	d diamete			,20 ,00		,20 ,50	1
	w. deviatio		± 1	,00	± 1	,00]
	lerhead dia Ink diamet			40 70		50 30	
d -	w. deviatio),15),15	
	d height		3, 20	30 25		20	
	Drive TX Drive PZ					<u>0</u> 3	
	v length l	s ²⁾	-	2 ndard th		-	l_{gf} = Full thread l_{gp} =Partial thread Tolerance: ± 2,0 ³)
Nominal			_		Ι.		
length	min	max	l _{gf}	l _{gp}	l _{gf}	l _{gp}	
20	ls -1,05	ls +1,05					-
25 30	l _s –1,25 l _s –1,25	l _s +1,25 l _s +1,25	24				
35	l₅ –1,50	l _s +1,50	29	24	28		
40	ls -1,50	l _s +1,50	34	28	33	28	-
45 50	l _s –1,50 l _s –1,50	l _s +1,50 l _s +1,50	39 44	30 30	38 43	30 30	-
55		ls +1,75	49	36	48	36	
60		l _s +1,75	54	36	53	36	
70 80	l _s –1,75 l _s –1,75	l _s +1,75 l _s +1,75	64 74	42 45	63 73	42 45	
90	l _s –1,75	l _s +1,73	/4	54	13	54	
100	ls –2,00	ls +2,00		60		60	
110	ls -2,00	ls +2,00		70		70	-
120 in ste	l₅ –2,00 ps of 10m	ls +2,00 m		70		70	-
130-300	l _s –3,00	l _s +3,00				70	
All sizes in mm • Screws with partial thread > 60 mm l _s with shank ribs ²⁾ Other screw lengths with l _s min $\leq l_s \leq l_s$ max and other thread lengths l _{gf} resp. l _{gp} \geq 4xd up to max. standard thread lengths are allowed ³⁾ For 10 mm $\leq l_{gf}$ resp., l _{gp} \leq 18mm \rightarrow tolerance ±1,5 mm and for 18 mm $< l_{gf}$ resp. l _{gp} \leq 30 mm \rightarrow tolerance ±1,7 mm							
		f	ischer	Powe	erFast		Annex A5
Screw sizes and material							


Table A6: Screw sizes and material

Powe	PowerFast II - Self-drilling screw with clamping effect – partial/underhead thread									
Underhead milling pockets ¹⁾ \overline{D}										
¹⁾ optional Carbon Possible		reatments			ated, blu orass pla				plated ≥12µ	Figure not to scale
Nomina	al diame	eter		,5	4 ,		4	,5		
Out	er thread o			50	4,0			50		
a Allo	w. deviatio	on	± 0	,25	± 0	,30	± 0	,30		
	er thread di			20	2,			75		
Allo	w. deviation er thread o			,18 00	± 0 4,5			,20 00		
0 2	w. deviatio			00 ,30	4,: ±0			,30		
Hea	d diamete			, <u>00</u> 00	8,0			00		
	w. deviatio		± 0	,50	± 0			,60		
	nk diamet			60	2,9			20		
Allo	Allow. deviation			,15 50	±0			,15		
	h Head height Drive TX			20		2,80 20		80 10		
	Drive PZ				2 2			2		
Screv	v length l	s ²⁾	Standard thread length l_d = Double thread l_{gp} =N						lain thread Tolerance: \pm 2,0	
Nominal length	min	max	lu	l _{gp}	lu	l _{gp}	lu	l _{gp}		
20	ls -1,05	l _s +1,05								
25 30	ls −1,25 ls −1,25	l _s +1,25 l _s +1,25	10	16	10,5	16	12			
35	ls -1,50	ls +1,20	10	16	10,5	16	12			
40	l _s –1,50	l _s +1,50	10	24	10,5	24	12			
45	l _s –1,50		10	24	10,5	24	12			
50	ls -1,50		10	24	10,5	24	12	24		
55 60	ls -1,75		10 10	30 30	10,5 10,5	30 30	12 12	30 30		
60 70	l _s −1,75 l _s −1,75		10	- 50	10,5	30	12	30		
80	ls –1,75				,.					
90	l _s –2,00									
100	l _s –2,00	l _s +2,00								
110	ls -2,00	l _s +2,00								
120 in ste	<u>l</u> ₅ –2,00 ps of 10m									
130-300	ls –3,00	1								
All sizes in mm ²⁾ Other screw lengths with $l_s \min \le l_s \le l_s \max$ and other thread lengths $l_{gp} \ge 4xd$ up to max. standard thread lengths are allowed ³⁾ For 10 mm $\le l_d \operatorname{resp.} l_{gp} \le 18$ mm \rightarrow tolerance ±1,5 mm and for 18 mm $< l_d \operatorname{resp.} l_{gp} \le 30$ mm \rightarrow tolerance ±1,7 mm										
		f	scher	Powe	erFast	11				Annex A6
	Screw sizes and material									


Table A7: FAFS-Clip size and material

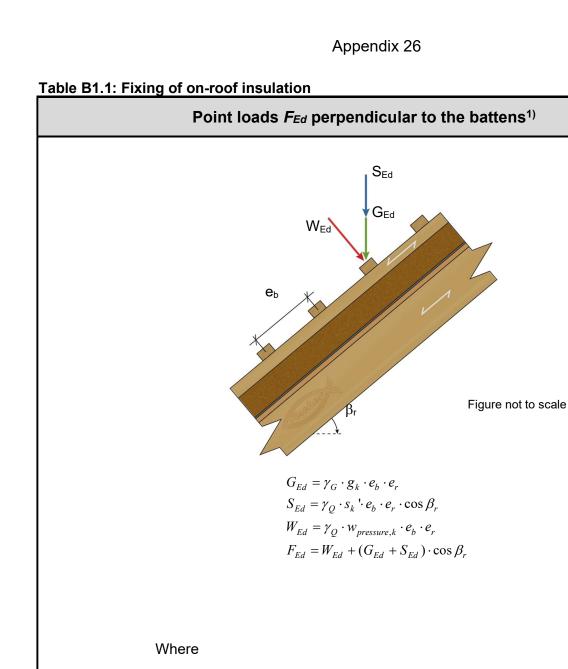
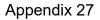
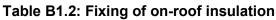

	FAFS-CI	ip of adjustable frame screw	
Trade mark ¹⁾ h	AAA	ਚ - 	
	ls tion A-A	Elevation B-B	≜ ≜
_''optional	luonA-A	Elevation D-D	Figure not to scale
 Zinc die-cast 			
Nominal diameter	5,0		
ls Nominal length Allow. deviation	13,5 ± 1,50		
Head diameter	12,5		
a _h Allow. deviation	± 0,62		
h Head height	4,30		
Allow. deviation Drive TX	± 0,20		
Drive TX	non-standard		All sizes in mm
2) Other Clip lengths with L min		d other thread lengths l_{gf} resp. $l_{gp} \ge 4 \ge 4$	
are allowed		$\pm 1,5$ mm and for 18 mm < l_{gf} resp. $l_{gp} \le 30$	
	fischer Powe	arFast II	Annex A7
FAF	S-Clip sizes a	and material	

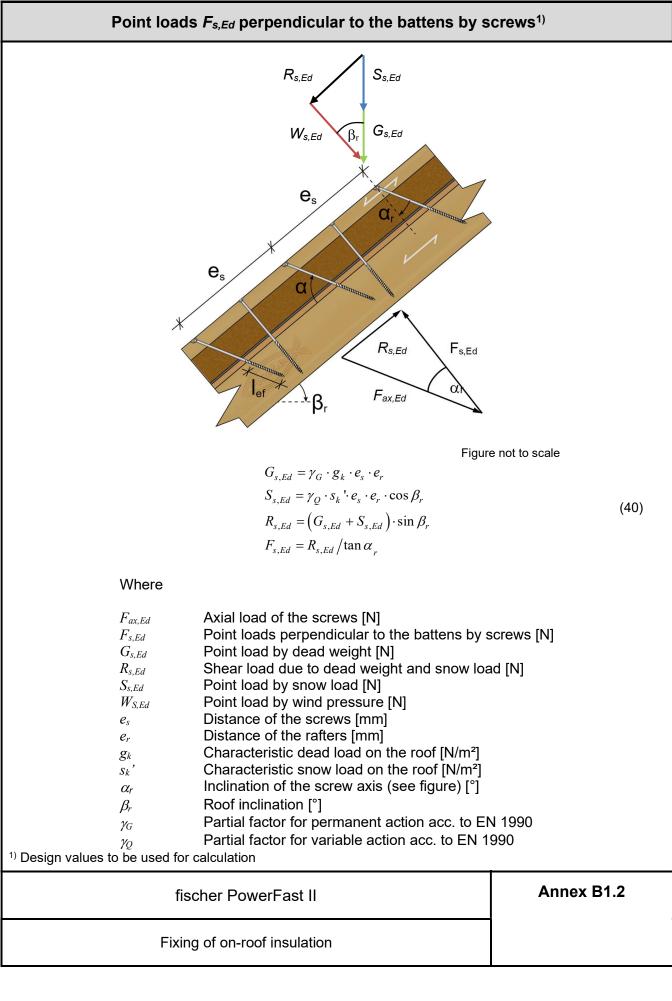
Table A8: Washer sizes and material

Annex B: Application examples and design references Table B1: Fixing on-roof insulation

Point load perpendicular to the battens [N]
Point load by dead weight [N]
Point load by snow load [N]
Point load by wind pressure [N]
Distance of the battens [mm]
Distance of the rafters [mm]
Characteristic dead load per m ² roof area [N/m ²]
Characteristic snow load per m ² roof area [N/m ²]
Characteristic wind pressure per m ² roof area [N/m ²]
Roof inclination [°]
Partial factor for permanent action acc. to EN 1990
Partial factor for variable action acc. to EN 1990


¹⁾ For the calculation design values have to be used


fischer PowerFast II


Annex B1.1

(39)

Fixing of on-roof insulation

Table B1.3: Fixing of on-roof insulation

	Design of the battens	
The bending	g stresses of the battens are calculated with	
	$M_{Ed} = \frac{\left(F_{Ed} + F_{s,Ed}\right) \cdot l_{char}}{4}$	(41)
Where		
F _{Ed} F _{s,Ed} M _{Ed} I _{char}	Point loads perpendicular to the battens [N] Point loads perpendicular to the battens in the area of the set Design bending moment of the batten [Nmm] Characteristic length of the batten [mm] with $l_{char} = \sqrt[4]{\frac{4 \cdot EI}{w_{ef} \cdot K}}$, where EI Bending stiffness of the batten [Nmm ²] w_{ef} Effective width of the thermal insulation [mm] with $w_{ef} = w + t_{ii} / 2$, where w Minimum width of the batten or rafter [mm] t_{ii} Thickness of the thermal insulation [mm] K Bedding modulus [N/mm ³] The coefficient K may be calculated from the momentum the thickness t_{ii} of the thermal insulation if the effective width w_{ef} of the batten or rafter, respectively. For further calculated w_{ef} of the thermal insulation may be determined w_{ef} of the thermal insulation may be determined.	dulus of elasticity E_{ii} and ective width w_{ef} of the Due to the load is greater than the width alculations, the effective ined with $K = \frac{E_{ii}}{t_{ii}}$, where
The followir	E_{ti} Modulus of elasticity of the thermal insulation t_{ti} Thickness of the thermal insulation [mm]	
	ng conditions shall be satisfied: $\frac{\sigma_{\!\scriptscriptstyle m,Ed}}{f_{\!\scriptscriptstyle m,d}}{\leq}1$	(42)
Where	σπιμ	
$\sigma_{m,Ed} \ f_{m,d}$	Design value of the bending stress of the batten [N/mm²] Design value of the bending strength [N/mm²]	
Where $f_{v,d}$ A_{ef} V_{Ed} $ au_{Ed}$	$\frac{\tau_{Ed}}{f_{v,d}} = \frac{3 \cdot V_{Ed}}{2 \cdot A_{ef} \cdot f_{v,d}} \leq 1$ Design value of the shear strength of the batten [N/mm ²] Net cross section of the batten [mm ²] Design shear load onto the batten [N] with $V_{Ed} = \frac{F_{Ed} + F_{s,Ed}}{2}$ Design value of the shear stress of the batten [N/mm ²]	(43)
	fischer PowerFast II	Annex B1.3
	Fixing of on-roof insulation	

Table B1.4: Fixing of on-roof insulation

Table B1.4: Fixing of on-roof insulation Design of the heat ins	ulation
The compressive stresses in the thermal insulation shall be	calculated with
$\sigma_{c,Ed} = \frac{1.5 \cdot F_{Ed} + F_{s,Ed}}{2 \cdot l_{char} \cdot w_{ef}}$	<u>.</u> (44)
Where	
the thickness t_{ti} of the thermal insu- thermal insulation under compress in the insulation the effective width	n^{2}] tion [mm] the form the modulus of elasticity E_{ti} and the form the modulus of elasticity E_{ti} and that in the effective width w_{ef} of the sion is known. Due to the load extension to w_{ef} is greater than the width of the urther calculations, the effective width the element of the effective width the element of the effective width
t_{ti} Thickness of the thermal insula	
$\sigma_{c,Ed}$ Design value of the compression stresses of t	he thermal insulation
Note: The design value of the compressive stress shall not stress at 10 % deformation calculated according to EN 826.	
fischer PowerFast II	Annex B1.4
Fixing of on-roof insulation	

Table B1.5: Fixing of on-roof insulation

Design of the screws

The screws are loaded predominantly axially. The axial tension force in the screw may be calculated from the shear loads of the roof

$$F_{ax,Ed} = \frac{R_{s,Ed}}{\cos \alpha_r} \le F_{ax,\alpha,Rd}$$
(45)

Where

$F_{ax,Ed}$	Design value of the axial tension forces onto the screw [N]
$F_{ax, \alpha, Rd}$	Design value of the withdrawal capacity of the screw [N]
$R_{s,Ed}$	Shear loads onto the screw [N]
α_r	Angle inclined screw (see figure B1.2) [°]

The load-carrying capacity of axially loaded screws is the minimum design value of the axial withdrawal capacity of the threaded part of the screw, the head pull-through capacity of the screw and the tensile capacity of the screw.

In order to limit the deformation of the screw head for heat insulation thicknesses over 200 mm or with compressive strength below 0,12 N/mm², respectively, the axial withdrawal capacity of the screws shall be reduced by the factors k_1 and k_2 .

$$F_{ax,\alpha,Rd} = \min\left\{k_{ax} \cdot f_{ax,d} \cdot d \cdot l_{ef} \cdot k_1 \cdot k_2 \cdot \left(\frac{\rho_k}{350}\right)^{0,8}, f_{head,d} \cdot d_h^{-2} \cdot \left(\frac{\rho_k}{350}\right)^{0,8}, f_{tens,d}\right\}$$
(46)

Where

$F_{ax,\alpha,Rd}$	Design value of the withdrawal capacity of the screw [N]					
d	Diameter of the screw [mm]					
d_h	Head diameter of the screw [mm]					
$f_{ax,d}$	Design value of the withdrawal parameter of the threaded part of the screw [N/mm²]					
fhead,d	Design value of the head pull-through capacity of the screw [N/mm ²]					
ftens,d	Design value of the tensile capacity of the screw [N]					
<i>k</i> _{ax}	Coefficient according to equation (11)					
k_l	$min \{1; 200 / t_{ii}\}$ [-]					
k_2	min {1; $\sigma_{10\%,Ed}$ / 0,12} [-], where					
	$\sigma_{10\%,Ed}$ Compressive stress of the heat insulation at 10 % deformation [N/mm ²]					
	<i>t_{ti}</i> Thickness of the thermal insulation [mm]					
l_{ef}	Point side penetration length of the threaded part in the rafter with $l_{ef} \ge 40$ mm					
α	Angle between grain and screw axis ($\alpha \ge 30^\circ$) [°]					
$ ho_k$	Characteristic density of the timber element [kg/m³]					

Note: If in the equation for $F_{ax,Rd}$ the factors k_1 and k_2 are considered, the deflection of the battens does not need to be considered. Alternatively to the battens, panels with a minimum thickness of 20 mm from plywood according to EN 636 or an ETA or national provisions that apply at the installation site, particle board according to EN 312 or an ETA or national provisions that apply at the installation site, oriented strand board according to EN 300 or an ETA or national provisions that apply at the installation site and solid wood panels according to EN 13353 or an ETA or national provisions that apply at the installation site or Cross- laminated Timber according to an ETA may be used.

fischer PowerFast II	Annex B1.5
Fixing of on-roof insulation	

Table B1.6: Fixing of on-roof insulation

Thermal insulation material on rafters with parallel screws perpendicular to the roof plane

Alternative to the battens, panels with a minimum thickness of 20 mm from plywood according to EN 636, particleboard according to EN 312, oriented strand board OSB/3 and OSB/4 according to EN 300 or European Technical Assessment and solid wood panels according to EN 13353 may be used.

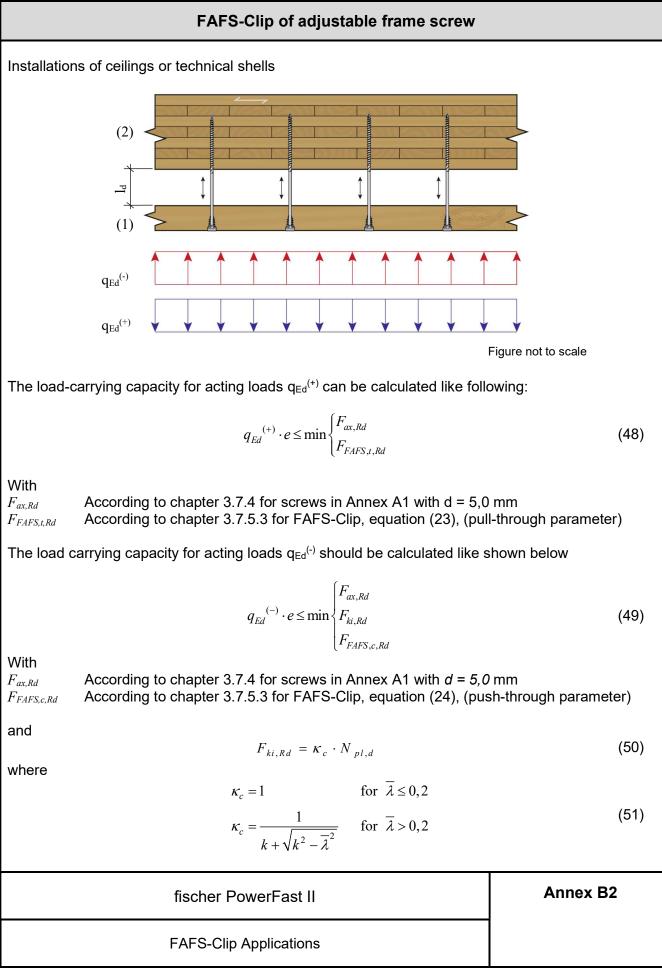
Characteristic load-carrying capacity of a screw loaded in shear:

$$F_{v,Rk} = min \begin{cases} f_{h,b,k} \cdot d \cdot t_{b} \\ f_{h,r,k} \cdot d \cdot t_{r} \\ \frac{f_{h,b,k} \cdot d \cdot \beta}{1+\beta} \cdot \left(\sqrt{4t_{ii}^{2} + (2+\frac{1}{\beta})t_{b}^{2} + (2+\beta)t_{r}^{2} + 4t_{ii}\left(t_{b} + t_{r}\right) + 2t_{b}t_{r}} - 2t_{ii} - t_{b} - t_{r}\right) + \frac{F_{ax,Rk}}{4} \\ 1,05 \cdot \frac{f_{h,b,k} \cdot d \cdot \beta}{\frac{1}{2} + \beta} \left(\sqrt{t_{ii}^{2} + t_{ii}t_{b} + \frac{t_{b}^{2}}{2}\left(1 + \frac{1}{\beta}\right) + \frac{M_{y,k}}{f_{h,b,k} \cdot d}\left(1 + \frac{2}{\beta}\right)} - t_{ii} - \frac{t_{b}}{2}\right) + \frac{F_{ax,Rk}}{4} \\ 1,05 \cdot \frac{f_{h,b,k} \cdot d \cdot \beta}{\frac{1}{2} + \beta} \left(\sqrt{t_{ii}^{2} + t_{ii}t_{r} + \frac{t_{r}^{2}}{2}\left(1 + \beta\right) + \frac{M_{y,k}}{f_{h,b,k} \cdot d}\left(2 + \frac{1}{\beta}\right)} - t_{ii} - \frac{t_{r}}{2}\right) + \frac{F_{ax,Rk}}{4} \\ 1,05 \cdot \frac{f_{h,b,k} \cdot d \cdot \beta}{\frac{1}{2} + \beta} \left(\sqrt{t_{ii}^{2} + t_{ii}t_{r} + \frac{t_{r}^{2}}{2}\left(1 + \beta\right) + \frac{M_{y,k}}{f_{h,b,k} \cdot d}\left(2 + \frac{1}{\beta}\right)} - t_{ii} - \frac{t_{r}}{2}\right) + \frac{F_{ax,Rk}}{4} \\ 1,15 \cdot \frac{f_{h,b,k} \cdot d}{1 + \beta} \left(\sqrt{\beta^{2}t_{ii}^{2} + 4 \cdot \beta\left(\beta + 1\right) \cdot \frac{M_{y,k}}{f_{h,b,k} \cdot d}} - \beta \cdot t_{ii}\right) + \frac{F_{ax,Rk}}{4} \end{cases}$$

Where

$F_{v,RK}$	Characteristic load-carrying capacity of a screw loaded in shear [N]
$M_{y,k}$	Characteristic yield moment of the screw [Nmm]
$F_{ax,Rk}$	The minimum characteristic load-carrying capacity of the axially loaded
	screws acc. to EN 1995-1-1 [N]
$f_{h,b,k}$	Characteristic embedment strength of the batten [N/mm ²]
$f_{h,r,k}$	Characteristic embedment strength of the rafter [N/mm ²]
d	Outer thread diameter [mm]
t_b	Batten thickness [mm]
t_r	The lower value of rafter thickness or screw penetration length [mm]
t_{ti}	Thickness of the thermal insulation [mm]
β	Coefficient of the embedment strength of the rafter to the batten [-]
t _r	The lower value of rafter thickness or screw penetration length [mm] Thickness of the thermal insulation [mm]

with
$$\beta = \frac{f_{h,r,k}}{f_{h,b,k}}$$


fischer PowerFast II

Annex B1.6

Fixing of on-roof insulation

Appendix 32

Table B2: FAFS-Clip

Table B2.1: FAFS-Clip

FAFS-Clip of adjustable frame screw

with

$$k = 0, 5 \cdot \left[1 + 0, 49 \cdot \left(\overline{\lambda} - 0, 2 \right) + \overline{\lambda}^2 \right]$$
(52)

The relative slenderness ratio shall be calculated with

$$\overline{\lambda} = \frac{4 \cdot L_{cr}}{\pi \cdot (0, 7 \cdot d)} \cdot \sqrt{\frac{f_{y,k}}{E_s}}$$
(53)

With the characteristic value for the axial capacity in case of plastic analysis referred to the diameter

$$N_{pl,k} = \frac{(0,7 \cdot d)^2 \cdot \pi}{4} \cdot f_{y,k}$$
(54)

For screws with a diameter of 5 mm, according to Annex A1

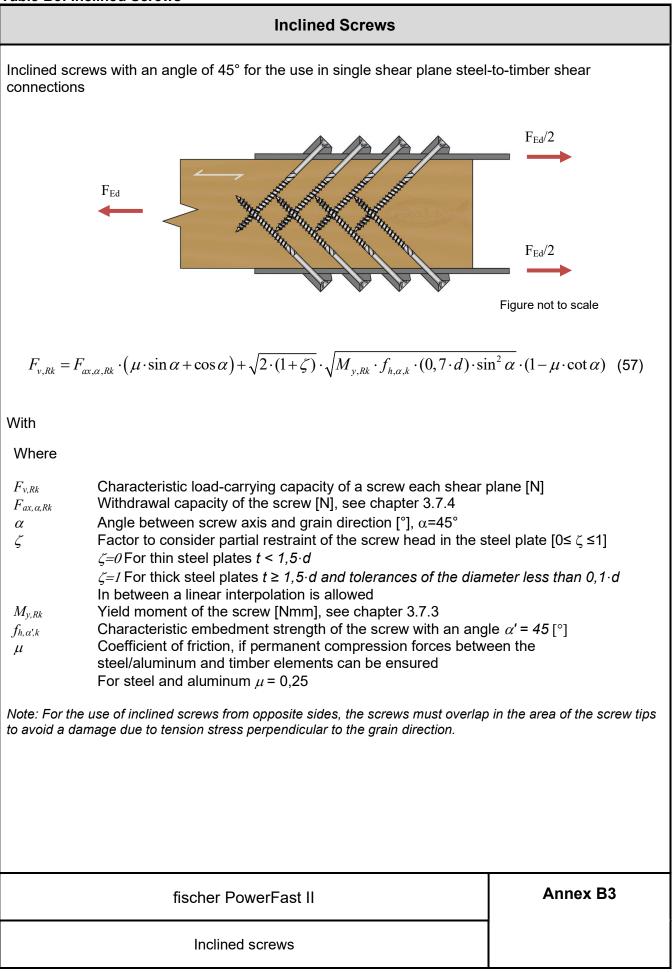
$$N_{pl,k} = 8710 \text{ N}$$
 (55)

And the buckling length L_{cr} on the side of the screw tip with a minimum penetration depth of $8 \cdot d$

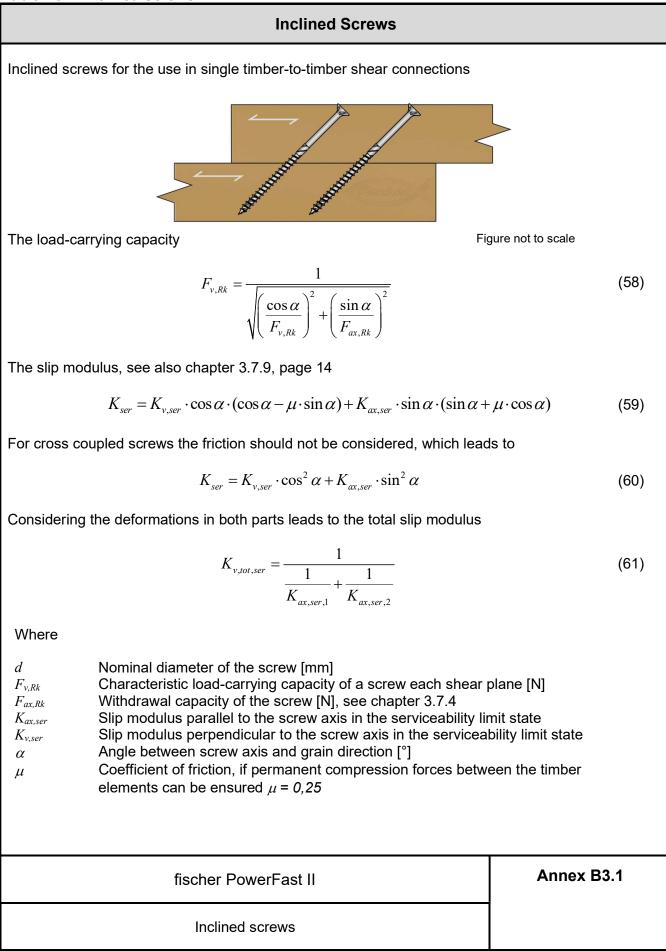
$$L_{cr} = 0, 7 \cdot l_d \tag{56}$$

Where

d e Es	Nominal diameter of the screw [mm] Effective distance (supporting points) between parallel arranged screws [m] Modulus of elasticity of the screw [N/mm²], see chapter 3.7.7
$F_{ax,Rd}$	Design withdrawal capacity of the screw in the structural timber element (2) [N], see chapter 3.7.4
$F_{FAFS,t,Rd}$	Design head pull-through capacity of the FAFS-Clip in timber part (1) for tension forces [N], see chapter 3.7.5.3
$F_{FAFS,c,Rd}$	Design head push-through capacity of the FAFS-Clip in timber part (1) for compression forces [N], see chapter 3.7.5.3
Lcr	Buckling length of the screw [mm]
l_d	Distance between (1) and (2) [mm]
$N_{pl,k}$	Characteristic axial capacity in case of plastic analysis [N]
$q_{Ed}^{(+)}$	Design load effecting tension loads on the installation element (1) [N/m]
$q_{Ed}^{(-)}$	Design load effecting compression loads on the installation element (1) [N/m]


Note: The compressive capacity must be modified for $f_{ax,d}$ with the factors k_{mod} and γ_M for timber according to EN 1995-1-1 while $N_{pl,d}$ the partial-factor $\gamma_{M,1}$ for steel buckling according to EN 1993-1-1 and/or national standards must be considered.

fischer PowerFast II


Annex B2.1

FAFS-Clip Applications

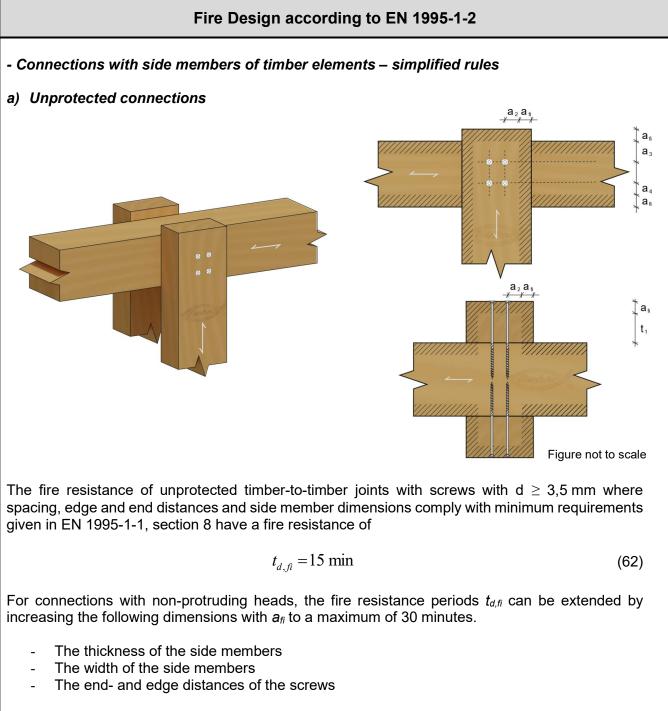

Table B3: Inclined Screws

Table B3.1: Inclined Screws

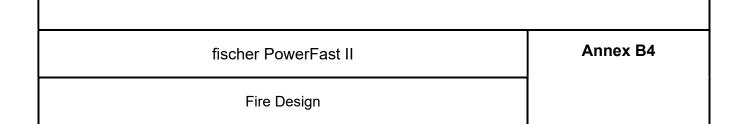
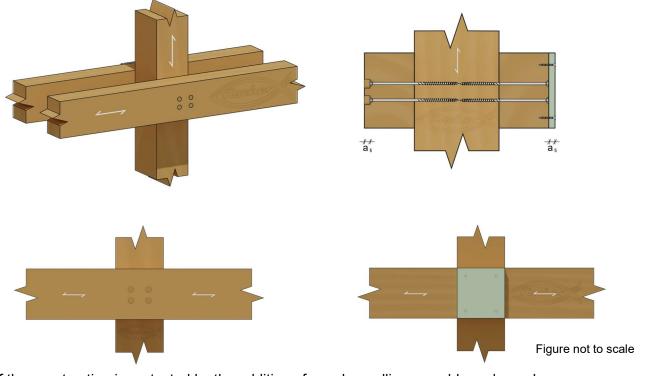


Table B4: Fire Design

With

$$a_{fi} = 1, 5 \cdot \beta_n \cdot (t_{req} - t_{d,fi})$$
(63)

Table B4.1: Fire Design


Fire Design according to EN 1995-1-2

The values for the design notional charring rate β_n under standard fire exposure are given below.

Table B4.1: Notional charring rate

Material	β _n [mm/min]
Softwood and beech	
Glued-Laminated Timber with a characteristic density of \geq 290 kg/m ³	0,70
Solid Timber with a characteristic density of \geq 290 kg/m ³	0,80
Hardwood	
Solid or Glued-Laminated hardwood with a characteristic density of \geq 290 kg/m ³	0,70
Solid or Glued-Laminated hardwood with a characteristic density of \ge 450 kg/m ³	0,55
LVL	
LVL with a characteristic density of \geq 480 kg/m ³	0,70

b) Protected connections

If the construction is protected by the addition of wood panelling, wood-based panels or gypsum plasterboards type *A* or *H* or other fire protection panels with a fire resistance in accordance to an European Technical Assessment, the time until start of charring should satisfy

$$t_{ch} \ge t_{req} - 0, 5 \cdot t_{d,fi}$$

(64)

fischer PowerFast II	Annex B4.1
Fire Design	

Table B4.2: Fire Design

Fire Design according to EN 1995-1-2

If the connection is protected by the addition of gypsum plasterboard type F, the time until start of charring should satisfy equation (65).

$$t_{ch} \ge t_{reg} - 1, 2 \cdot t_{d,fi} \tag{65}$$

For connections where the screws are protected by glued-in timber plugs, the length of the plugs should be determined according to

$$a_{fi} = 1, 5 \cdot \beta_n \cdot (t_{req} - t_{d,fi})$$
(66)

The fixings of the additional protection should prevent its premature failure. Additional protection provided by wood-based panels or gypsum plasterboards should remain in place until charring of the member starts ($t = t_{ch}$). Additional protection provided by gypsum plasterboards type *F* should remain in place during the required fire resistance period ($t = t_{req}$).

The following rules apply for the fixing of additional protections by screws:

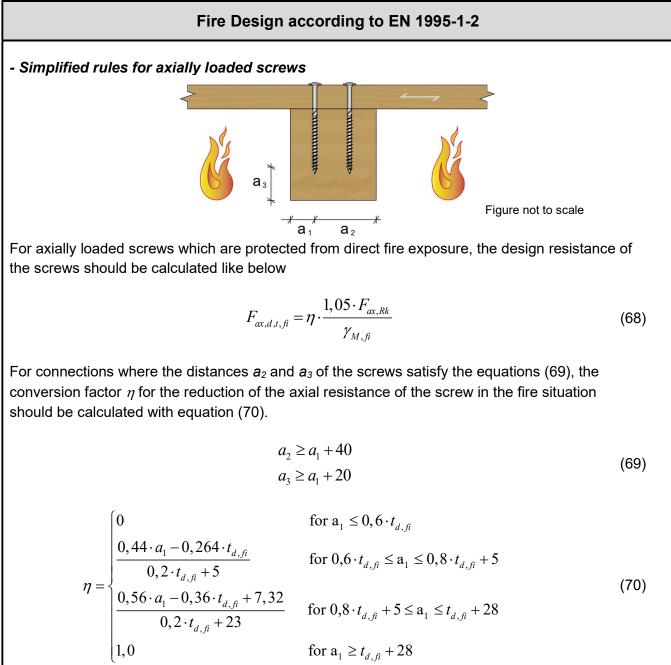
- The distance between the screws should be not more than 100 mm along the board edges and not more than 300 mm for fastenings within the area of the boards
- The edge distance of fasteners should be equal or greater than *a_{fi}*, calculated using expression

$$a_{fi} = 1, 5 \cdot \beta_n \cdot (t_{req} - t_{d,fi})$$
(67)

The penetration depth of the screws for fixing the additional protection made of wood, woodbased panels or gypsum plasterboards type A or H should be at least $6 \cdot d$.

For gypsum plasterboards type F, the penetration length into unburnt wood (that is beyond the char-line) should be at least 10 mm (see also EN 1995-1-2).

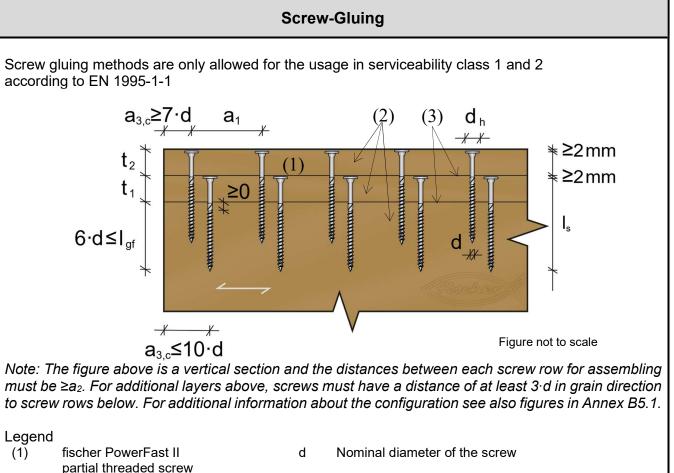
Where


- *a_{fi}* Extra thickness of member to improve the fire resistance [mm]
- *t_{req}* Required time of fire resistance [min]
- $t_{d,fi}$ Time of the fire resistance of the unprotected connection [min]
- β_n Notional charring rate [mm/min]

fischer PowerFast II

Annex B4.2

Fire Design


Table B4.3: Fire Design

Where

F _{ax,d,t,fi} γ _{M,fi} η	Deutiel feisten feistinch ein the series of fine sees. Netien eine militäring			
	Fire Design			

Table B5: Screw-Gluing

- (2) Bonded part
- (3) Glue joint

grain in a row

- Thickness of the gluing parts t_1, t_2 aı Spacing of the screws parallel to the
- Threaded length (Igp for partial-threaded screws) lgf Head diameter dh

Screw length

Distance of the screw to the unloaded end grain

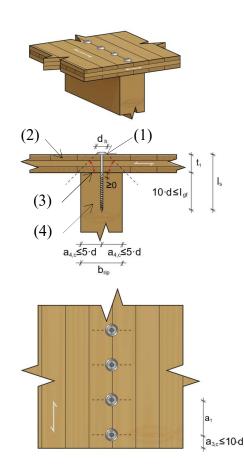
The shown applications for screw-bonding applies only for structures in serviceability class 1 and 2 according to EN 1995-1-1. The use of an adhesive with joint filling properties is necessary. If the joint thickness of a maximum of 0.3 mm can be ensured, adhesives according to EN 15425 and adhesives type I may also be used according to EN 301. The adhesive manufacturer's instructions must be fulfilled. Only »fischer PowerFast II« screws with washer or step countersunk heads (see Annex A4 and A5) with a nominal diameter $d \ge 5$ mm should be used.

ls

a3,c

In the use of partial-threaded screws, no part of the thread should be in the bonded part. When using fully threaded screws, the glued part must be pre-drilled with a borehole of at least d + 1.0 mm. The upper side of the screw head or the washer, must be countersunk at least 2 mm from the surface of the glued part. The figure above shows the different options for installing the partial threaded screws of the assembling structural elements.

fischer PowerFast II


Annex B5

Screw -Gluing

Table B5.1: Screw-Gluing

Screw-Gluing

The minimum spacing for connections with axially loaded screws must be observed. The maximum distance in the adhesive surface to the ends of the components must be $a_{3,c} \le 10 \cdot d$, and to the edges $a_{4,c} \leq 5 \cdot d$. With a single-row screw connection, the rib width b_{rib} may not be larger than $d_h + 2 \cdot t_1$, otherwise a multi-row screw connection must be carried out.

Legend

- Partial threaded screw with washer (1)
- (3)Glue ioint
- Spacing of the screws parallel to the a₁* a₁ grain in a row
- Spacing of the screws perpendicular **a**3,c a_2 to the grain direction **b**_{rip}
- Distance to the unloaded edge **a**4.c
- Nominal diameter of the screw d
- Screw length ls
- Thickness of the bonded panel t1

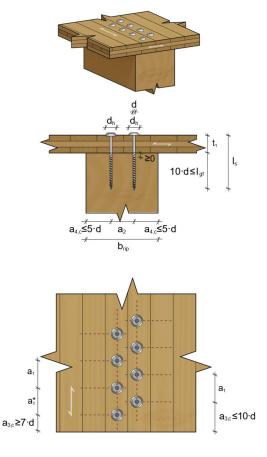


Figure not to scale

(2) Panel (4) Rib (timber beam)

Reduced spacing of the screw parallel to the grain in a row to ensure a distance of a₁/2 between adjoining screw rows Distance to the unloaded end grain

- Width of the beam web
- Head diameter dh
 - Threaded length (*l*_{gp} for partial-threaded screws)

Annex B5.1 fischer PowerFast II Screw -Gluing

 l_{gf}

Table B5.2: Screw-Gluing

Screw-Gluing

The surfaces of the bonded parts must be suitable for bonding and are in accordance to the requirements of the adhesive manufacturer. In general, the finishes need be sanded or smoothed planed and without coatings, dirt, dust and impurities.

The tolerance of the joint thickness of the assembling parts must fulfil the tolerances for

- Beam- and plate-shaped screw-gluing: max. 1 mm per 1 m
- Ribbed panels: *max.* 2 mm per 2 m

If several layers are glued together, each layer must be screwed-on separately. The screws must be arranged staggered (see also figure Annex B 5.1, right below), to apply enough pressure in all joints. In the intermediate layers, the screw heads should not protrude the surface of the intermediate layer.

Deformations and movements that lead to damages of the adhesive-joints have to be avoided. The screw parameters and distances depend on the thickness of the assembling parts, given in the table below.

Material bonded part	Thickness bonded part [mm]	Recommended nominal diameter [mm]	Min. nominal head diameter [mm]	Maximum scre Parallel to the grain direction of the outer layer [mm]	w spacings Perpendicular to the grain direction of the outer layer [mm]	Length of the threaded screw part in the structural part [mm]	Calculated compressive stress <i>P_{cal,min}</i> [N/mm ²]
Beam- and panel sha	aped screw-gluir	ng		· • •			· · · · · · · · · · · · · · · · · · ·
LVL of softwood, three-layered solid timber panel, OSB	12 ≤ t < 19	≥ 5 e.g Annex A4, A5	9,8	100	65	6∙d	
LVL beech				100	100	8∙d	
Lamellas and one- layered solid timber panels		≥ 6	10,8	140	65	6∙d	0,10
LVL in spruce three-layered solid timber panel, OSB	solid	≤ <i>t</i> < 27 e.g Annex A1	Washer, e.g Annex A8	140	90	6∙d	
LVL beech			10,8	140	140	8∙d	
fischer PowerFast II					Annex I	35.2	
Screw -Gluing							

Table B5.2: Properties of the bonded parts, screw parameters and compressive stress

Table B5.3: Screw-Gluing

Screw-Gluing

As an alternative to the specifications in the table Annex B5.2, the maximum screw spacing can also be determined with the empirical equation (71).

$$a_{i,max} = 3,35 \cdot \sqrt[4]{E_{mean,i} \cdot I_{i,b=1}}$$
(71)

with *i* = 1 or 2

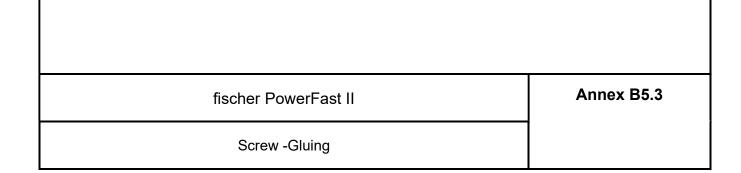
In addition, it must be proven that the calculated minimum compressive stress per screw is observed

$$\frac{F_{ax,Rd}}{a_1 \cdot a_2} \ge p_{cal,min} \tag{72}$$

Where

$a_{i,max}$	Maximum spacing of the screws in i-direction [mm]
$I_{i.b=1}$	Moment of inertia in i-direction for a width of 1 mm of the bonded part [mm ⁴]
Emean,i	Modulus of elasticity in i-direction of the bonded part [N/mm ²]
$a_{i,max}$	Maximum spacing of the screws [mm]
$F_{ax,Rd}$	Design withdrawal strength of the screw [N]
$p_{cal,min}$	Minimum calculated compressive stress according to Annex B5.2

For the characteristic head pull-through parameter $f_{head,k}$ the following models can be used:


- Screws with glued parts made of solid timber and wood-based materials in softwood with

$$f_{head,k} = 14 \cdot d_h^{-0.14} \cdot \left(\frac{\rho_k}{\rho_a}\right)^{0.8}$$
(73)

- Screws with glued parts made of LVL in beech with

$$f_{head,k} = 25 \text{ N/mm}^2 \tag{74}$$

The decrease in the pressure until the adhesive hardens, can be taken into account in the calculation model with $k_{mod} = 1,0$ and $\gamma_M = 1,3$. Table in Annex B5.2 is based on these model assumptions. After the required bond strength has been reached, the screws can be unscrewed.

